
Software
Maintenance

Unit II

What is Software
Maintenance?
 Software Maintenance is a broad activity

that includes:
Ń Error Corrections,
Ń Enhancements of Capabilities,
Ń Deletion of Obsolete Capabilities, and
Ń Optimization

 Any work done to change the software
after it is in operation is considered as
maintenance work.

 The purpose is to preserve the value of
the software over time.

Categories of Maintenance

 There are three major categories of
software maintenance:
Ń Corrective Maintenance
Ń Adaptive Maintenance
Ń Perfective Maintenance

Categories of Maintenance

 Corrective Maintenance:
Ń Refers to modifications initiated by defects

in the software.
Ń A defect can result from
 Design errors,
 Logical errors, and
 Coding errors.

Categories of Maintenance

 Corrective Maintenance:
Ń Design Errors occur when the software is
 Incorrect,
 Incomplete,
 The requirement specifications are

misunderstood.

Ń Logical Errors result from
 Invalid tests and conclusions,
 Incorrect implementation of design

specifications,
 Faulty logic flow,
 Incomplete test data

Categories of Maintenance

 Corrective Maintenance:
Ń Coding Errors are caused by
 Incorrect implementation of detailed logic

design,
 Incorrect use of source code logic.

Ń Defects are also caused by data
processing errors and system
performance errors.
Ń Any effort made to correct these errors

comes under corrective maintenance.
Ń Sometimes emergency fixes, also called

as “patching”, are done to restore the
operations of a software.

Categories of Maintenance

 Adaptive Maintenance:
Ń It includes modifying the software to

match changes in the environment.
Ń Environment refers to the totality of all

conditions and influences which act upon
the software from outside.
Ń For example,
 Business rules,
 Government policies,
 Work patterns,
 Software and hardware operating platforms.

Categories of Maintenance

 Adaptive Maintenance:
Ń This type of maintenance includes any

work that has been started due to moving
the software to a different hardware or
software platform (a new operating
system or a new processor).

Categories of Maintenance
 Perfective Maintenance:
Ń It means improving processing efficiency

or performance of the software.
Ń It also means restructuring the software to

improve changeability.
Ń When software becomes useful, the user

may want to extend it beyond the scope
for which it was initially developed.

Categories of Maintenance
 Perfective Maintenance:
Ń Expansion in requirements then results in

enhancements to the existing system
functionality or efficiency.
Ń Thus, Perfective maintenance refers to

enhancements to make the product better,
faster, and cleanly structured with more
functions and reports.

Categories of Maintenance
 Preventive Maintenance:
Ń Modification of a software product after its

delivery to detect and correct latent faults
in the software product before they
become effective faults.
Ń It is a predictable type of maintenance,

where the software is checked periodically
for adjustments, and repairs.

Software Maintenance
Process
 Once the maintenance objective is

identified,
Ń The maintenance personnel must

understand what they are to modify.
Ń Then they must modify the program to

satisfy maintenance objectives.
Ń After modification they must ensure that

the modification does not effect other
portions of the program.
Ń Finally they must test the program,

Determine Maintenance
Objective

Program Understanding

Generate particular
maintenance proposal

Account for Ripple Effect

Testing

Pass
Testing

?

Correct program error
Add new capabilities
Delete obsolete features
Optimization Phase 1

Complexity
Documentation
Self descriptiveness

Extensibility

Stability

Testability

Yes

No

Software Maintenance
Process
 Program Understanding
Ń Analyze the program to understand it.
Ń Complexity of the program,

documentation, self descriptiveness of the
program help in understanding it.
Ń Complexity of the program is usually

based on its data or control flow.

Software Maintenance
Process
 Generating Maintenance Proposal
Ń This is done to accomplish the

maintenance objective.
Ń It requires clear understanding of both the

maintenance objective and the program to
be modified.
Ń This process becomes easy if the

program is extensible and supports
extensions to its functions.

Software Maintenance
Process
 Ripple Effect
Ń In software, the effect of a modification

may not be local to the changed module
only.
Ń It may also effect other portions of the

program.
Ń This effect is called as Ripple Effect.
Ń One aspect of the effect is logical or

functional.
Ń Another aspect concerns the performance

of the program.
Ń Thus it becomes necessary to understand

the potential of the ripple effect.

Software Maintenance
Process
 Ripple Effect
Ń The primary attribute of the program that

gets effected by the ripple effect is the
stability of the program.
Ń Program Stability is defined as the

resistance to amplification of changes in
the program.

Software Maintenance
Process
 Modified Program Testing
Ń This phase consists of testing the

modified program to ensure that the
modified program has the same reliability
level as before.
Ń It is important that cost effective testing

techniques be applied during
maintenance.
Ń The testing process becomes cost

effective due to the testability of the
program.
Ń Program Testability is defined as the effort

Software Maintenance
Process
 Maintainability
Ń All of the factors of above four phases are

combined to form maintainability of the
program.
 How easy is it to maintain the program?

Ń The answer to this question depends upon
how difficult the program is to understand.
Ń Program maintainability and program

understandability are parallel concepts.
Ń The more difficult a program is to understand,

the more difficult it is to maintain.
Ń And the more difficult it is to maintain, the

higher is its maintainability risk.

��������	����ABC��������	����ABC

��������	��A�BCD��������	��A�BCD

� ����������	AB��C�DE�AE����F�B���	���B������

�EB�A	��BA��B��C�A	���B�B�B��������F������

	�����	��D��B�

������B���B���B��������

� ��EB���	AB���	��B���F������������B�����

���F���	���F�	���B���B�����	��B������E���

����������B����BA���B���B�F��B�B����	���	�

��B����������B�B�AB���B�DBB��B��BA�B������

�A�F����B�F���

��������������	�ABC�D��������������	�ABC�D

� ����B�	�B��B��	��C�DE�AE���B�B������	��D��B���	��

��	�FA����	����AA	�������	�F�B���B�F��B�B���

� ����B�	�B��B��	���E����B����	��	��D��B�����F�B

� ����B�B����B��DEB�EB���EB�����B���BB���

�F���B�������F�B���BB��

� ���B��F�B���E����EB��	��D��B�����B�B�	�B��

�AA	�������	�F�B���B�F��B�B���

� �������	�B���EB��F������	���EB��	��D��B����

�B�	����������F���	�����B�B��	�����	����

E��B�BF��B�C	EA	E��B���B�CE��B�BF��B�C	EA	E��B���B�C

� �B����A���	��D	EF�FE�	��	��F�����	�E	�F�����	��	

��F���	���������	����� EF�	��E	�����E� ��F	

 ��	�������F��!	����	 �	 ����� �F�	

�"F����� ����#	

� �F����$�F�	���F	EF%�F���	 � �!����	

���"F������	 EF	�������!	��F�	��E	

%FE���� ����#

E��B�BF��B�C	EA	E��B���B�CE��B�BF��B�C	EA	E��B���B�C

� ��������	���EF�FE�	��	��F	"E��F��	��	��F�����	
�� �	��F	�F%F��"F�	����� EF	�FF��	��F	
EF$��EF�F���	�"F����F�	&!	��F	��FE#	

� �B����A���	�D	�EF	�F	�F%F��"���	��F	
�	��D��B����E� ���F	�����%FE!	��	�F�F���	��	
��F	�!��F�

� ��������	�D	�EF	�F	�F%F��"���	��F	���E��
�	��D��B ���F	 ��F���F��	��	��F��FE	�E	���	
��F	�!��F�	��	�� &�F	��	 �	�"FE ���� �	
���� ����

���	���	�����A	���C�	BC	A����������	���	�����A	���C�	BC	A�������

� !�	���������B��	��D	'E��E ��FE�	� �	� �F	

���� �F�	����F	�F%F��"���	��F	���E�F	���F

� "�A�B����B�F��B�B���D	��F	��FE	��	���	��F E	 &���	

��F	�F��EF�	EF$��EF�F���	�E	��F	�F%F��"FE�	 EF	

�� &�F	��	���FE�� ��	��F	��FE	EF$��EF�F���	��	 	

��F E	� ��FE

� #	��D��B�A	���B����D	��F	���"�F(��!	��	��EEF��	�)�	

� �	&F	���������	��	���"EF�F��	��E	���F	��F	���	

��F�	���	� %F	"E��E	F("FE�F��F	��	�)�	�F%F��"�F��

� $E��������B�F��B�B���D	��F	��FE	� !	���	

���FE�� ��	��F	F��F���	��	�� ��F#	

� %��B���B��F�B�D	��F�	�F ����F�	 EF	���	

�F��	��F	 ��F�"�	��	�"FF�	�"	��F	��E�	� ��F�	

FEE�E�

� !		�����	AF�B��B��A	�BD	A�	��	���������	��	

� ��� ��	 ��	�����!	 	���F	�� �	��	& ��!	

�E���F�	�E	"��E�!	�����F��F��	� !	�F �	��	

FEE�E

���	������	��A�	����	���D�������	������	��A�	����	���D����

� *���	"F�"�F	 EF	������F�	��	�F�F��	�� �	��F!	

"E����F	+	���	����	� ���	����	��#

� �����	"E��E ��FE�	������	 %���	�F�����	��F�E	

���	"E��E ��#

� ��F	� ��	������	&F	 �����F�	��	 �	

���F"F��F��	�F��	�E��"	�����	��	EF�"����&�F	

��	�F�F��	FEE�E�	�� �	� !	� %F	&FF�	

�F��F��F�	&!	��F	����� EF	�F%F��"FE�#

��B���BC�A	��	��������	��A�BCD��B���BC�A	��	��������	��A�BCD

� ,F���F	��F	F("F��F�	���"��D	

� A��"F��	���"��	D

� A�����F	�F��	� �F�	��E	A�% ���	 ��	

-�F("F��F�	.���������D

� �F��	��F	*�����F�	"E��E �	��	��F��	���	

F("F��F�	"FE��E� ��F

��A�	F�A���A�	F�A�

� �	�B���A��B	��	����� EF	F����FFE���	��	 	�F�	
��	����������	�E	% E� &�F�	���FE	�����	 	
�F��FE	����	�F�FE���F	��F��FE	 �	 ""��� ����	
�E	����� EF	�!��F�	��	��E����	��EEF���!	�E	
���#	

� A�	�E�FE	��	����!	�F��	�� �	 ��	��F	EF$��EF�F���	
��	 �	 ""��� ����	 EF	�F��	��FEF	����	&F	���
���������������	�����A�B���	C�B�DEFB�����D	
� "�����%F	�F��	� �F
� �F� ��%F	�F��	� �F

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Software_system

�������	��E����������	��E���

� -���	�F�����

� A��F�E ����	�F�����

� �!��F�	�F�����

� ���F"� ��F	�F�����

 CB�	��A�BCD CB�	��A�BCD

� -���	�F�����	��	 	�F�����	��	�����	��F	����%��� �	
����	��	��F	����� EF	 EF	�F��F�	��	���� ����	
�E��	���FE	" E��	��	 	"E��E �#

��% �� �F	D
� 	��	� ���	��F	�F�F���	�� �	����E�	 �	��F	F E�!	
�� �F	��	����� EF	�F%F��"�F��#

� ��	������/F	��F	E ���	��	�F�F���	&F��EF	
��%���	��	�F(�	�F%F�

�C��D���B�C	��A�BCD�C��D���B�C	��A�BCD

��F	�����	% ��� �F�	��E���	����	�F�����	
 EF	���&��F�	��	��E�	 	��&�!��F�#	��F	
"�E"��F	��	���F�E ����	�F�����	��	��	
F���EF	�� �	 ��	��F	�����F�	�������F	��	
��E�	��	 ���E� ��F	����	������FE	
EF$��EF�F���	F%F�	 ��FE	���F�E ����#

�0��	0 ��	�F�����
�0�����	-"	�F�����
���"	,���	�F�����
��F�EF�����	�F�����

!BD	!�CD	��A�BCD!BD	!�CD	��A�BCD

"�����	#	$

��A���

"�����	#	%

"�����	#	&

"�����	#	'"�����	#	(

"�����	#)

!BD	!�CD	��A�BCD!BD	!�CD	��A�BCD

� �	�!"F	��	���F�E ����	��	�����	����� EF	

���"��F���	��	 �	 ""��� ����	 EF	

���&��F�	 ��	 �	���F	����	 	�%FE ��	

�!��F�	 ���E����	��	����	 ""E� ��

!BD	!�CD	��A�BCD!BD	!�CD	��A�BCD

��% �� �F	D	

� .������� ����	&F��FF�	% E����	�����F�	��	

��F��F�

,�� �% �� �FD

� A�	��	"����&�F	�� �	 	�F�	��	FEE�E�	��	�F�F��F��	

&��	���������	��	��EEF��	��F�F	FEE�E�	 �	��F	

"E��E �	��	%FE!	� E�F#

!�����#�*	�C��D���B�C	��A�BCD!�����#�*	�C��D���B�C	��A�BCD

� 0�����1�"	A��F�E ����	�F�����	D

A�	&�����	�"	���F�E �����	 ��	�����F�	 EF	

 ��F�	�E	���&��F�	�E��	���FE	�F%F�	

��FE E��!	��	����FE	�F%F�	��FE E��!	A#F#�	��F	

���FE	�F%F�	���F�	��	�F��F�	��	���� ����	��E���	

��F�	��F	�F(�	�F�	��	����FE	�F%F�	�����F�	

 EF	�F��F�	����	��F	"EF%�����!	�F��F�	���FE	

�����F�#

��*#���C	BC��D���B�C	��A�BCD��*#���C	BC��D���B�C	��A�BCD

� A���� ��!�	���!	��F	�����F	�����	 �	��F	� ��	
����E��	�����F	��	�F��F�#	��F�	 ��	��F	
�����F�	� ��F�	&!	��	 EF	���&��F�	����	��	 ��	
�F��F�#	����	"E��F��	�������F�	����	 ��	��F	
�����F�	��	��F	����� EF	 EF	���F�E �F�	 ��	
�F��F�#

� ��F	� ��	����E��	�����F	��	��F�	 �	 	�F��	
�E�%FE	 ��	���&�	 EF	��F�	��	EF"� �F	 ��	��F	
���FE	�����F��	�����	 EF	��EF���!	��&�E��� �F	
��	��F	� ��	����E��	�����F#

E�FC�������������FE�FC�������������F

� ��B&�F�����	��	�F�F��	"E�&�F��	� ��F�	&!	��F	
 �%FE�F	F��F���	��	"E��E �	�� ��F

� '�������B��

1����EF�	�� �	��F	���� ��F�	" E��	��	 	����� EF	
��E�	"E�"FE�!

1	����EF�	�� �	 ��	FEE�E�	�� �	� %F	����EEF�	��	��F	
����� EF	��F	��	������� �����	 EF	��EEF��F�	 ��	 EF	
���	 ��F�����	���	��E����#

� (����������B���

1���F	���������	 ���%��!

1������FEF�	��		&F	F("F���%F

��A���	��A�BCD��A���	��A�BCD

� #���B���B�����	��	����� EF	�E	� E�� EF	��	 	�F�����	
�������F�	��	 	���"�F�F�	���F�E �F�	�!��F�	��	
F% �� �F	��F	�!��F�2�	���"�� ��F	����	���	�"F����F�	
EF$��EF�F���	

� A�	���" EF�	��F	�!��F�	����	��F	���	�������� �	
�!��F�	EF$��EF�F����	����	 �	�F��E��!�	�"FF��	
 ���E �!	 ��	EF�� &����!#

� ��"� ���	��	
� 3 ��� ����	 ��	%FE��!���	��F	�������� �	�F����	�"F����� ����
� �(������	���	�����F�	��E�	���F��FE
� �% �� �F�	F(�FE� �	���FE� �F�	��	���FE	 ""��� �����	 ��	

�������F�	�E	��F	��#

http://en.wikipedia.org/wiki/Requirements

��A���	��A�BCD��A���	��A�BCD

3 E����	�����	��	�F�����	"FE��E�F�	 �	 	" E�	

��	�!��F�	�F�����

� �F��%FE!	�F�����

� �F��E��!	�F�����

� ��EF��	�F�����

� 'FE��E� ��F	�F�����

+�F�,���	��A�BCD+�F�,���	��A�BCD

� A�	��E�F�	��F	�!��F�	��	� ��	��	����FEF��	� !�	

 ��	%FE���F�	�� �	��F	����� EF	EF��%FE�	�E��	

F("F��F�	�E	��F("F��F�	F%F���	�������	����	

��	� � #

	 F%F���	�F ��	��	� ���EF	 EF	�!��F�	�E ��F��	

� E�� EF	� ���EF		F��#

� �!��F�	������	&F	� ���	���FE ��#	A�	� �F	��	��	��	

����	��	�FF��	��	&F	��EEF��F�#

+�F�,���	��A�BCD+�F�,���	��A�BCD

'�������B��

1��	��F���	��F��FE	��F	& ���"	� � 	��	� %F�	

"E�"FE�!	�E	���

1��	F���EF�	& ���"	� � 	��	���EF�	��	 	�F��EF�	

��� ����

1��	F���EF�	"E�"FE	EF��%FE!	"E��F��EF	��	&F	

� ��� ��F�

A�F��B��	��A�BCDA�F��B��	��A�BCD

� ����	�F�����	��	"FE��E�F�	�����	��F�����F�	 ��	

EF��%F�	����� EF	�� ��	�� �	� !	"��F��� ��!	

�F �	��	�F��E��!	%��� �����

� ��F	�F��FE	"� !�	��F	E��F	��	��F	����%��� �	

�E!���	��	"F�F�E �F	��F	�!��F�	���F	 �� �����	

��F	�!��F�	����	����� EF�	�����	&EF ��	����	

 �!	"E��F�����	�F�� �����	&����	��	"E��F��	

��F	�!��F�	 ��	"E����F	FEE�E�	��	��F	�!��F�

1 ""��� ����	�F��E��!

1�!��F�	�F��E��!

� '����A���	���BAF����D	%FE���F�	�� �	��F	��FE	

� �	 ��F��	���!	����F	� � 	 ��	���������	��E	

�����	��F	��FE	��	�!��F�	� �	��%F�	

"FE��������

� #���B���BAF����D	%FE���F�	�� �	���!	��F	��FE��	

���	� %F	"FE�������	��	 ��F��	��F	�!��F��	

 EF	 ��F�����	��#

A���AA	��A�BCDA���AA	��A�BCD

� A�	�F���	��F	�)�	��	 &��E� �	���� �����#

� A�	��	�������F�	��	F% �� �F	 	�!��F�	�E	

���"��F��	 �	�E	&F!���	��F	�����	��	���	

�"F����F�	EF$��EF�F���#

-�,�C��D�A	��	A���AA	��A�BCD

� A�	����� �F�	��F	F("F��F�	&F� %���E	��	 	

�!��F�	��F�	��	EF ��F�	��F	F(�EF�F	�F%F�	��	

���	� " ���!

� A�	F(F���F�	 	�!��F�	����	��	� ���#	����	F� &�F�	

��F	�F��FE�	��	�F�FE���F	��F	����	&F��FF�	��F	

F("F��F�	�"FE ����	����������	 ��	��F	� ���EF	

����������#

� A�	�F�FE���F�	��F	 ��	��	�� �	�� �	� ��F�	 	

�!��F�	��	� ��

��������CF�	��A�BCD��������CF�	��A�BCD
� ����	�F�����	��	��F�	��	%FE��!	��F	�� ��	 ��	

EF�"���F	���F	�F���F�	&!	��F	EF$��EF�F���#

4��F	

� ��BB�D	����	EF�FE�	��	��F	� " &����!	��	 	

�!��F�	��	EF�"���	��	��FE�	 �	$�����!	 �	

"����&�!

� �A���������D	��F	� " &����!	��	 	�!��F�	��	

� ���F	��F	�� �	��%F�	��	��

� 	���������D	� " &����!	��	 	�!��F��	��	"EF%F��	

���F��	�E��	� ���EF	 �	����	 �	"����&�F

-FF�*�BCD	��A�BCD

� A���	�F���F�	��	 �	5	��E� �	�F�����	����	EF�"F��	��	
��FE	�FF���	EF$��EF�F����	 ��	&����F��	"E��F��F�	
�������F�	��	�F�FE���F	��F��FE	�E	���	 	�!��F�	
� �����F�	��F	 ��F"� ��F	�E��FE� 	 ��	��	F� &�F	��F	
��FE�	������FE	�E	���FE	 ����E�/F�	F����!	��	
�F�FE���F	��F��FE	�E	���	��	 ��F"�	��F	�!��F�

� ����F	��F	�)�	��	���F��F�	��E	� E�F	���&FE	��	��FE��	
��	��	���	"����&�F	��	"FE��E�	 ��F"� ��F	�F�����	����	
 ��	��F	��FE�#	��FEF��EF	�E� ��/ �����	F�� �F�	��	
�)�	�F%F��"�F��	��F	 �"� 	 ��	&F� 	�F�����	 �	 	
"E��F��	��	�F�F��	FEE�E�	&!	 �������	 	�����F�	
���&FE	��	��FE�	��	�F��	��F	�)�

� '��E��� ��� �	F��1��FE	�F�����	"FE��E�F�	������	��F	
�F%F��"�F��	F�%�E���F��

� ����	�F�����	 ��F��F�	��F	"FE��E� ��F	��	 	�)�	��	
��F	F�%�E���F��	��	�����	��	��	�F%F��"F�#

�)B����F��1��FE	�F�����	"FE��E�F�	������	��F	��FE	
F�%�E���F��	"E��E	��	�F�FE �	EF�F �F#

� 	����	�F�����	��	"FE��E�F�	�������	 �!	���FE�FEF��F	
��E�	��F	�F%F��"FE#	0F� 	�F�����	��	"FE��E�F�	��	
����	��F��FE	��F	�F%F��"F�	�)�	� �����F�	��FE	
EF$��EF�F���	 ��	����	������	��F	&����F��	
F�%�E���F��	�E	���

��A�BCD	��F�CB.��A

� ���F	��F	�)�	��	�F%F��"F�	��	������	&F	�F��F�	��	 	
"E�"FE	� ��FE	&F��EF	��F	�!��F�	��	�F��%FEF�	��	��F	
��FE#

� ���F	��F	���FE� �	��E����	��	 	�)�	��	������	�F���	
 EF	"FE��E�F�	��	F���EF	�� �	 ��	���FE� �	�"FE �����	
��	 	�)�	 EF	"FE��E�F�	 ���E����	��	�"F����� �����#	
����	��	EF�FEEF�	��	 �	DE��B��	���B�����#

� ���F	��F	�"F����F�	��������	��E	�����	 	�)�	� �	
&FF�	�F����F�	��	������	�F���	 EF	"EF��E�F�	��	
F���EF	�� �	F ��	��������	��	��E����	"E�"FE�!#	����	
��		EF�FEEF�	��	 �	���A*��	���B�����

��B��	!�/	��A�BCD

� ����	� ��F�D	.�F E	0�(�F������	C� ��	0�(
�F�����	 ��	��E����E �	�F�����

� ��F	* 6�E	�&6F���%F	��	����F1&�(�F�����	��	��	�����	��	���FE� �	
"E��E �	��E����EF�	 ��	�����%FE	 ��	���FE� �	"E��E �	FEE�E�#

�C������B�����F���A�	E����
���B��B�����BE	�EB��

���B��B�������������������B��	C��
����BF�E���F�����A��B��B������C�

���B��B���F���B�������F	������������BE	�EB��
���B��B���F���B������C��F�B�������������

��B��	!�/	��A�BCD

� ��F	�� �	��	��D

1	C� E ��FF	�� �	 ��	���F"F��F��	" ���	������	 	�����F	

� %F	&FF�	F(FE���F�	 �	�F ��	���F#

1	�(FE���F	 ��	����� �	�F�������	��	��F�E	�E�F	 ��	� ��F	���F�#

1	�(F���F	 ��	���"�	 �	��F�E	&���� E�F�	 ��	������	��F�E	

�"FE ���� �	&�����#

1	�(FE���F	���FE� �	� � 	��E����EF�	��	 ���EF	��F�E	% �����!#	

1	�(FE���F	 ��	� � 	�F���F�	 ��	��F�	" ���#

��B��	!�/	��A�BCD

3 E����	�F�����	�����	 EF	" E�	��	����F	&�(

�F�����	 EF

� .���E��	��E����EF	�F�����

� 0 ���	" ��	�F�����

� *�� ����	�F�����

!��F0	!�/	��A�BCD

� A�	��	 ���	�����	 �	�������� �	�F�����#	��F	

�������� ���!	��	�F�FE���F�	&!	�&�FE%���	��F	

�)"	��	��F	��EEF�"������	�)"#

� 3 E����	�F�����	��F�	��	&� ��	&�(�F�����	

 EF	B�F����B�AB�A������������	����C�

�	F���������FB���������

1Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

After the finalization of SRS, we would like to

estimate size, cost and development time of the

project. Also, in many cases, customer may like to

know the cost and development time even prior to

finalization of the SRS.

3Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

In order to conduct a successful software project, we

must understand:

� Scope of work to be done

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

� The risk to be incurred

� The resources required

� The task to be accomplished

� The cost to be expended

� The schedule to be followed

4Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Software planning begins before technical work starts, continues as

the software evolves from concept to reality, and culminates only

when the software is retired.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Size estimation

Cost estimation Development time

Resources
requirements

Project
scheduling

Fig. 1: Activities during Software

Project Planning

5Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

}18.

return 0;17.

}16.

}15.

x[j] = save;14.

x[i] = x[j];13.

Save = x[i];12.

{11.

if (x[i] < x[j])10.

for (j=1; j<=im; j++)9.

im1=i-1;8.

{7.

for (i=2; i<=n; i++)6.

If (n<2) return 1;5.

/*This function sorts array x in ascending order */4.

int i, j, save, im1;3.

{2.
int. sort (int x[], int n)1.

If LOC is simply a count of

the number of lines then

figure shown below contains

18 LOC .

When comments and blank

lines are ignored, the

program in figure 2 shown

below contains 17 LOC.

Lines of Code (LOC)

Size Estimation

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Fig. 2: Function for sorting an array

6Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

Jan 1993 Jun 1994 Oct 1995 Mar 1997 Jul 1998 Dec 1999 Apr 2001

T
o

ta
l

L
O

C

Total LOC ("wc -l") -- development releases

Total LOC ("wc -l") -- stable releases

Total LOC uncommented -- development releases

Total LOC uncommented -- stable releases

Growth of Lines of Code (LOC)

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

7Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Furthermore, if the main interest is the size of the program

for specific functionality, it may be reasonable to include

executable statements. The only executable statements in

figure shown above are in lines 5-17 leading to a count of

13. The differences in the counts are 18 to 17 to 13. One

can easily see the potential for major discrepancies for

large programs with many comments or programs written

in language that allow a large number of descriptive but

non-executable statement. Conte has defined lines of code

as:

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

8Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

“A line of code is any line of program text that is not a

comment or blank line, regardless of the number of

statements or fragments of statements on the line. This

specifically includes all lines containing program header,

declaration, and executable and non-executable

statements”.

This is the predominant definition for lines of code used

by researchers. By this definition, figure shown above

has 17 LOC.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

9Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Alan Albrecht while working for IBM, recognized the

problem in size measurement in the 1970s, and

developed a technique (which he called Function Point

Analysis), which appeared to be a solution to the size

measurement problem.

Function Count

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

10Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The principle of Albrecht’s function point analysis (FPA)

is that a system is decomposed into functional units.

� Inputs : information entering the system

� Outputs : information leaving the system

� Enquiries : requests for instant access to
information

� Internal logical files : information held within the
system

� External interface files : information held by other system
that is used by the system being
analyzed.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

11Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The FPA functional units are shown in figure given below:

ILF
EIF

User

User

Other

applications

System

Outputs

Inputs

Inquiries

ILF: Internal logical files

EIF: External interfaces

Fig. 3: FPAs functional units System

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

12Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The five functional units are divided in two categories:

(i) Data function types

� Internal Logical Files (ILF): A user identifiable group of

logical related data or control information maintained

within the system.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

� External Interface files (EIF): A user identifiable group of

logically related data or control information referenced by

the system, but maintained within another system. This

means that EIF counted for one system, may be an ILF in

another system.

13Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(ii) Transactional function types

� External Input (EI): An EI processes data or control information

that comes from outside the system. The EI is an elementary

process, which is the smallest unit of activity that is meaningful

to the end user in the business.

� External Output (EO): An EO is an elementary process that

generate data or control information to be sent outside the

system.

� External Inquiry (EQ): An EQ is an elementary process that is

made up to an input-output combination that results in data

retrieval.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

14Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Special features

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

� Function point approach is independent of the language,

tools, or methodologies used for implementation; i.e. they

do not take into consideration programming languages,

data base management systems, processing hardware or

any other data base technology.

� Function points can be estimated from requirement

specification or design specification, thus making it

possible to estimate development efforts in early phases of

development.

15Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Function points are directly linked to the statement of

requirements; any change of requirements can easily

be followed by a re-estimate.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

� Function points are based on the system user’s

external view of the system, non-technical users of

the software system have a better understanding of

what function points are measuring.

16Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Counting function points

1075External Interface files (EIF)

15107External logical files (ILF)

643External Inquiries (EQ)

754External Output (EO)

643External Inputs (EI)

HighAverageLow

Weighting factors
Functional Units

Table 1 : Functional units with weighting factors

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

17Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 2: UFP calculation table

Count

Complexity

Complexity

Totals

Low x 3
Average x 4

High x 6

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Low x 4
Average x 5

High x 7

Low x 3
Average x 4

High x 6

Low x 7
Average x 10

High x 15

Low x 5
Average x 7

High x 10

Functional
Units

External
Inputs
(EIs)

External
Outputs
(EOs)

External
Inquiries
(EQs)

External
logical
Files (ILFs)

External
Interface
Files (EIFs)

Functional

Unit Totals

Total Unadjusted Function Point Count

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

18Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The weighting factors are identified for all

functional units and multiplied with the functional

units accordingly. The procedure for the

calculation of Unadjusted Function Point (UFP) is

given in table shown above.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

19Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The procedure for the calculation of UFP in mathematical

form is given below:

Where i indicate the row and j indicates the column of Table 1

Wij : It is the entry of the ith row and jth column of the table 1

Zij : It is the count of the number of functional units of Type i that

have been classified as having the complexity corresponding to

column j.

��
= =

=
5

1

3

1i J

ijijwZUFP

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

20Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Organizations that use function point methods develop a criterion for

determining whether a particular entry is Low, Average or High.

Nonetheless, the determination of complexity is somewhat

subjective.

FP = UFP * CAF

Where CAF is complexity adjustment factor and is equal to [0.65 +

0.01 x �Fi]. The Fi (i=1 to 14) are the degree of influence and are

based on responses to questions noted in table 3.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

21Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 3 : Computing function points.
Rate each factor on a scale of 0 to 5.

20 3 541

ModerateNo
Influence

Average EssentialSignificantIncidental

Number of factors considered (Fi)

1. Does the system require reliable backup and recovery ?

2. Is data communication required ?

3. Are there distributed processing functions ?

4. Is performance critical ?

5. Will the system run in an existing heavily utilized operational environment ?

6. Does the system require on line data entry ?

7. Does the on line data entry require the input transaction to be built over multiple screens or operations ?

8. Are the master files updated on line ?

9. Is the inputs, outputs, files, or inquiries complex ?

10. Is the internal processing complex ?

11. Is the code designed to be reusable ?

12. Are conversion and installation included in the design ?

13. Is the system designed for multiple installations in different organizations ?

14. Is the application designed to facilitate change and ease of use by the user ?

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

22Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Functions points may compute the following important metrics:

Productivity = FP / persons-months

Quality = Defects / FP

Cost = Rupees / FP

Documentation = Pages of documentation per FP

These metrics are controversial and are not universally acceptable.

There are standards issued by the International Functions Point User

Group (IFPUG, covering the Albrecht method) and the United

Kingdom Function Point User Group (UFPGU, covering the MK11

method). An ISO standard for function point method is also being

developed.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

23Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.1

Consider a project with the following functional units:

Number of user inputs = 50

Number of user outputs = 40

Number of user enquiries = 35

Number of user files = 06

Number of external interfaces = 04

Assume all complexity adjustment factors and weighting factors are

average. Compute the function points for the project.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

24Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

��
= =

=
5

1

3

1i J

ijijwZUFP

UFP = 50 x 4 + 40 x 5 + 35 x 4 + 6 x 10 + 4 x 7

= 200 + 200 + 140 + 60 + 28 = 628

CAF = (0.65 + 0.01 �Fi)

= (0.65 + 0.01 (14 x 3)) = 0.65 + 0.42 = 1.07

FP = UFP x CAF

= 628 x 1.07 = 672

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

We know

25Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example:4.2

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

An application has the following:

10 low external inputs, 12 high external outputs, 20 low

internal logical files, 15 high external interface files, 12

average external inquiries, and a value of complexity

adjustment factor of 1.10.

What are the unadjusted and adjusted function point counts ?

26Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

= 10 x 3 + 12 x 7 + 20 x 7 + 15 + 10 + 12 x 4

= 30 + 84 +140 + 150 + 48

= 452

FP = UFP x CAF

= 452 x 1.10 = 497.2.

��
= =

=
5

1

3

1i J

ijij wZUFP

Solution

Unadjusted function point counts may be calculated using

as:

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

27Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.3

Consider a project with the following parameters.

(i) External Inputs:

(a)10 with low complexity

(b)15 with average complexity

(c)17 with high complexity

(ii) External Outputs:

(a)6 with low complexity

(b)13 with high complexity

(iii) External Inquiries:

(a) 3 with low complexity

(b) 4 with average complexity

(c) 2 high complexity

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

28Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(iv) Internal logical files:

(a)2 with average complexity

(b)1 with high complexity

(v) External Interface files:

(a)9 with low complexity

In addition to above, system requires

i. Significant data communication

ii. Performance is very critical

iii. Designed code may be moderately reusable

iv. System is not designed for multiple installation in different
organizations.

Other complexity adjustment factors are treated as average. Compute

the function points for the project.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

29Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution: Unadjusted function points may be counted using table 2

Count Complexity

Totals

Low x 3
Average x 4

High x 6

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Low x 4
Average x 5

High x 7

Low x 3
Average x 4

High x 6

Low x 7
Average x 10

High x 15

Low x 5
Average x 7

High x 10

Functional
Units

External
Inputs
(EIs)

External
Outputs
(EOs)

External
Inquiries
(EQs)

External
logical
Files (ILFs)

External
Interface
Files (EIFs)

Functional

Unit Totals

Total Unadjusted Function Point Count

10

Complexity

15

17

6

0

13

3

4

2

0

2

1

9

0

0

30

60

102

24

0

91

9

16

12

0

20

15

45

0

0

192

115

37

35

45

424

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

30Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

=�
=

14

1i

iF 3+4+3+5+3+3+3+3+3+3+2+3+0+3=41

CAF = (0.65 + 0.01 x �Fi)

= (0.65 + 0.01 x 41)

= 1.06

FP = UFP x CAF

= 424 x 1.06

= 449.44

Hence FP = 449

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

31Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Relative Cost of Software Phases

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

32Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cost to Detect and Fix Faults

0

20

40

60

80

100

120

140

160

180

200

Req Des I nt

Cost

�
�
��
��
�
�
�	
A
B
��
�A
�C
�
��
D
��
�
E
C
�D
A
FF
�
D
��
��
�
��
�

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

33Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� Project scope must be established in advance

Cost Estimation

� Software metrics are used as a basis from which estimates are made

� The project is broken into small pieces which are estimated individually

� Delay estimation until late in project

� Use simple decomposition techniques to generate project cost and
schedule estimates

� Develop empirical models for estimation

� Acquire one or more automated estimation tools

A number of estimation techniques have been developed and are

having following attributes in common :

To achieve reliable cost and schedule estimates, a number of options

arise:

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

34Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

MODELS

Static, Single

Variable

Models

Static,

Multivariable

Models

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

35Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

C = a Lb

E = 1.4 L0.93

DOC = 30.4 L0.90

D = 4.6 L0.26

Static, Single Variable Models

Effort (E in Person-months), documentation (DOC, in number of

pages) and duration (D, in months) are calculated from the number

of lines of code (L, in thousands of lines) used as a predictor.

Methods using this model use an equation to estimate the desired

values such as cost, time, effort, etc. They all depend on the same

variable used as predictor (say, size). An example of the most

common equations is :

(i)

C is the cost, L is the size and a,b are constants

36Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

E = 5.2 L0.91

D = 4.1 L0.36

Static, Multivariable Models

The productivity index uses 29 variables which are found to be

highly correlated to productivity as follows:

These models are often based on equation (i), they actually depend

on several variables representing various aspects of the software

development environment, for example method used, user

participation, customer oriented changes, memory constraints, etc.

�
=

=Ι
29

1i

ii XW

37Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.4

Compare the Walston-Felix model with the SEL model on a

software development expected to involve 8 person-years of effort.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

(a)Calculate the number of lines of source code that can be

produced.

(b)Calculate the duration of the development.

(c)Calculate the productivity in LOC/PY

(d)Calculate the average manning

38Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

The amount of manpower involved = 8 PY = 96 person-months

(a) Number of lines of source code can be obtained by reversing

equation to give:

L = (E/a)1/b

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

L(SEL) = (96/1.4)1/0.93 = 94264 LOC

L(SEL) = (96/5.2)1/0.91 = 24632 LOC.

Then

39Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(b) Duration in months can be calculated by means of equation

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

D(W-F) = 4.1 L0.36

= 4.1(24.632)0.36 = 13 months

D(SEL) = 4.6 (L)0.26

= 4.6 (94.264)0.26 = 15 months

(c) Productivity is the lines of code produced per person/month (year)

YearsPersonLOCSELP −== /11783
8

94264
)(

YearsPersonLOCFWP −==− /3079
8

24632
)(

40Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(d) Average manning is the average number of persons required per

month in the project.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Persons
M

MP
SELM 46

15

96
.)(=

−
=

Persons
M

MP
FWM 47

13

96
.)(=

−
=−

41Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Constructive Cost model

(COCOMO)

Basic Intermediate Detailed

Model proposed by

B. W. Boehm’s

through his book

Software Engineering Economics in 1981

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

The Constructive Cost Model (COCOMO)

42Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

COCOMO applied to

Semidetached

mode Embedded

mode

Organic

mode

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

43Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Deadline of
the project

Innovation Development
Environment

Nature of ProjectProject sizeMode

Small size project, experienced
developers in the familiar
environment. For example, pay
roll, inventory projects etc.

Medium size project, Medium
size team, Average previous
experience on similar project.
For example: Utility systems
like compilers, database
systems, editors etc.

Organic

Semi
detached

Embedded

Table 4: The comparison of three COCOMO modes

Typically

2-50 KLOC

Typically

50-300 KLOC

Typically over

300 KLOC

Little Not tight Familiar & In
house

Medium Medium Medium

Significant Tight Complex
Hardware/
customer
Interfaces
required

Large project, Real time
systems, Complex interfaces,
Very little previous experience.
For example: ATMs, Air Traffic
Control etc.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

44Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Basic COCOMO model takes the form

Basic Model

bb

b KLOCaE)(=

bd

b EcD)(=

where E is effort applied in Person-Months, and D is the

development time in months. The coefficients ab, bb, cb and db are

given in table 4 (a).

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

45Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0.322.51.203.6Embedded

0.352.51.123.0Semidetached

0.382.51.052.4Organic

dbcbbbab
Software

Project

Table 4(a): Basic COCOMO coefficients

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

46Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

When effort and development time are known, the average staff size

to complete the project may be calculated as:

Persons
D

E
SS =)(

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Average staff size

When project size is known, the productivity level may be

calculated as:

PMKLOC
E

KLOC
P /)(=Productivity

47Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.5

Suppose that a project was estimated to be 400 KLOC.

Calculate the effort and development time for each of the three

modes i.e., organic, semidetached and embedded.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

48Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

The basic COCOMO equation take the form:

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

bb

b KLOCaE)(=

bd

b KLOCcD)(=

Estimated size of the project = 400 KLOC

(i) Organic mode

E = 2.4(400)1.05 = 1295.31 PM

D = 2.5(1295.31)0.38 = 38.07 PM

49Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

(ii) Semidetached mode

E = 3.0(400)1.12 = 2462.79 PM

D = 2.5(2462.79)0.35 = 38.45 PM

(iii) Embedded mode

E = 3.6(400)1.20 = 4772.81 PM

D = 2.5(4772.8)0.32 = 38 PM

50Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.6

A project size of 200 KLOC is to be developed. Software

development team has average experience on similar type of

projects. The project schedule is not very tight. Calculate the effort,

development time, average staff size and productivity of the project.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

51Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

The semi-detached mode is the most appropriate mode; keeping in

view the size, schedule and experience of the development team.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Average staff size

E = 3.0(200)1.12 = 1133.12 PM

D = 2.5(1133.12)0.35 = 29.3 PM

Hence

Persons
D

E
SS =)(

Persons6738
329

121133
.

.

.
==

52Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Productivity PMKLOC
E

KLOC
/1765.0

12.1133

200
===

PMLOCP /176=

53Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cost drivers

Intermediate Model

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

(i) Product Attributes

� Required s/w reliability

� Size of application database

� Complexity of the product

(ii) Hardware Attributes

� Run time performance constraints

� Memory constraints

� Virtual machine volatility

� Turnaround time

54Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

(iii) Personal Attributes

� Analyst capability

� Programmer capability

� Application experience

� Virtual m/c experience

� Programming language experience

(iv) Project Attributes

� Modern programming practices

� Use of software tools

� Required development Schedule

55Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

TURN

VIRT

STOR

TIME

Computer Attributes

CPLX

DATA

RELY

Product Attributes

Extra

high

Very

high

HighNominalLowVery low

Cost Drivers RATINGS

Multipliers of different cost drivers

1.651.301.151.000.850.70

--1.161.081.000.94--

--1.401.151.000.880.75

--1.151.071.000.87--

--1.301.151.000.87--

1.561.211.061.00----

1.661.301.111.00----

56Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

SCED

TOOL

MODP

Project Attributes

LEXP

VEXP

PCAP

AEXP

ACAP

Personnel Attributes

Extra

high

Very

high

HighNominalLowVery low

Cost Drivers RATINGS

--

--0.951.001.071.14

--0.901.001.101.21

0.700.861.001.171.42

0.820.911.001.131.29 --

0.710.861.001.191.46

1.101.041.001.081.23

0.830.911.001.101.24

0.820.911.001.101.24

Table 5: Multiplier values for effort calculations

--

--

--

--

--

--

57Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Intermediate COCOMO equations

0.322.51.202.8Embedded

0.352.51.123.0Semidetached

0.382.51.053.2Organic

dicibiaiProject

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Table 6: Coefficients for intermediate COCOMO

EAFKLOCaE ib

i *)(=
id

i EcD)(=

58Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Detailed COCOMO

Phase-Sensitive

effort multipliers

Three level product

hierarchy

Modules subsystem

System level

Cost

drivers design

& test

Manpower allocation for

each phase

Detailed COCOMO Model

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

59Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Development Phase

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Plan / Requirements

EFFORT : 6% to 8%

DEVELOPMENT TIME : 10% to 40%

% depend on mode & size

60Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Design

Effort : 16% to 18%

Time : 19% to 38%

Programming

Effort : 48% to 68%

Time : 24% to 64%

Integration & Test

Effort : 16% to 34%

Time : 18% to 34%

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

61Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Size equivalent

Principle of the effort estimate

DD

EE

pp

pp

τ

µ

=

=

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

As the software might be partly developed from software already
existing (that is, re-usable code), a full development is not always
required. In such cases, the parts of design document (DD%), code
(C%) and integration (I%) to be modified are estimated. Then, an
adjustment factor, A, is calculated by means of the following
equation.

A = 0.4 DD + 0.3 C + 0.3 I

The size equivalent is obtained by

S (equivalent) = (S x A) / 100

62Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Lifecycle Phase Values of

0.340.240.240.180.08
Embedded

extra large

S�320

0.310.260.250.180.08
Embedded

large S�128

0.280.310.240.170.07
Semidetached

large S�128

0.250.330.250.170.07
Semidetached

medium S�32

0.220.380.240.160.06
Organic

medium S�32

0.160.420.260.160.06
Organic Small

S�2

Integration
& Test

Module
Code & Test

Detailed
Design

System
Design

Plan &
Requirements

Mode & Code
Size

pµ

Table 7 : Effort and schedule fractions occurring in each phase of the lifecycle

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

63Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Lifecycle Phase Values of

0.300.160.160.380.40
Embedded

extra large

S�320

0.280.180.180.360.36
Embedded

large S�128

0.290.250.190.270.22
Semidetached

large S�128

0.260.270.210.260.20
Semidetached

medium S�32

0.260.340.210.190.12
Organic

medium S�32

0.180.390.240.190.10
Organic Small

S�2

Integration
& Test

Module Code
& Test

Detailed
Design

System
Design

Plan &
Requirements

Mode & Code
Size

pτ

Table 7 : Effort and schedule fractions occurring in each phase of the lifecycle

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

64Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

1. Requirement and product design

(a)Plans and requirements

(b)System design

Distribution of software life cycle:

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

2. Detailed Design

(a)Detailed design

3. Code & Unit test

(a)Module code & test

4. Integrate and Test

(a) Integrate & Test

65Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.7

A new project with estimated 400 KLOC embedded system has to be

developed. Project manager has a choice of hiring from two pools of

developers: Very highly capable with very little experience in the

programming language being used

Or

Developers of low quality but a lot of experience with the programming

language. What is the impact of hiring all developers from one or the

other pool ?

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

66Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

This is the case of embedded mode and model is intermediate

COCOMO.

Case I: Developers are very highly capable with very little experience

in the programming being used.

= 2.8 (400)1.20 = 3712 PM

EAF = 0.82 x 1.14 = 0.9348

E = 3712 x .9348 = 3470 PM

D = 2.5 (3470)0.32 = 33.9 M

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Hence id

i KLOCaE)(=

67Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Case II: Developers are of low quality but lot of experience with the

programming language being used.

EAF = 1.29 x 0.95 = 1.22

E = 3712 x 1.22 = 4528 PM

D = 2.5 (4528)0.32 = 36.9 M

Case II requires more effort and time. Hence, low quality developers
with lot of programming language experience could not match with

the performance of very highly capable developers with very litter

experience.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

68Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Consider a project to develop a full screen editor. The major components
identified are:

I. Screen edit

II. Command Language Interpreter

III. File Input & Output

IV.Cursor Movement

V. Screen Movement

The size of these are estimated to be 4k, 2k, 1k, 2k and 3k delivered source
code lines. Use COCOMO to determine

1. Overall cost and schedule estimates (assume values for different
cost drivers, with at least three of them being different from 1.0)

2. Cost & Schedule estimates for different phases.

Example: 4.8

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

69Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Size of five modules are:

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Screen edit = 4 KLOC

Command language interpreter = 2 KLOC

File input and output = 1 KLOC

Cursor movement = 2 KLOC

Screen movement = 3 KLOC

Total = 12 KLOC

70Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Required software reliability is high, i.e.,1.15

ii. Product complexity is high, i.e.,1.15

iii. Analyst capability is high, i.e.,0.86

iv. Programming language experience is low,i.e.,1.07

v. All other drivers are nominal

EAF = 1.15x1.15x0.86x1.07 = 1.2169

Let us assume that significant cost drivers are

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

71Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(a) The initial effort estimate for the project is obtained from the

following equation

E = ai (KLOC)bi x EAF

= 3.2(12)1.05 x 1.2169 = 52.91 PM

Development time D = Ci(E)di

= 2.5(52.91)0.38 = 11.29 M

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

(b) Using the following equations and referring Table 7, phase wise

cost and schedule estimates can be calculated.

DD

EE

pp

pp

τ

µ

=

=

72Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Since size is only 12 KLOC, it is an organic small model. Phase wise

effort distribution is given below:

System Design = 0.16 x 52.91 = 8.465 PM

Detailed Design = 0.26 x 52.91 = 13.756 PM

Module Code & Test = 0.42 x 52.91 = 22.222 PM

Integration & Test = 0.16 x 52.91 = 8.465 Pm

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Now Phase wise development time duration is

System Design = 0.19 x 11.29 = 2.145 M

Detailed Design = 0.24 x 11.29 = 2.709 M

Module Code & Test = 0.39 x 11.29 = 4.403 M

Integration & Test = 0.18 x 11.29 = 2.032 M

73Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

COCOMO-II

The following categories of applications / projects are identified by

COCOMO-II and are shown in fig. 4 shown below:

End user

programming
Infrastructure

Application

generators &

composition aids

Application

composition

System

integration

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Fig. 4 : Categories of applications / projects

74Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 8: Stages of COCOMO-II

ApplicationsApplication for the

types of projects

Model NameStage

No

Stage I

Stage II

Stage III

Application composition

estimation model

Early design estimation

model

Post architecture

estimation model

Application composition

Application generators,

infrastructure & system

integration

Application generators,

infrastructure & system

integration

In addition to application

composition type of projects, this

model is also used for prototyping

(if any) stage of application

generators, infrastructure & system

integration.

Used in early design stage of a

project, when less is known about

the project.

Used after the completion of the

detailed architecture of the project.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

75Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Application Composition Estimation Model

Fig.5: Steps for the estimation of effort in person months

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

76Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Assess object counts: Estimate the number of screens, reports and

3 GL components that will comprise this application.

ii. Classification of complexity levels: We have to classify each

object instance into simple, medium and difficult complexity levels
depending on values of its characteristics.

Table 9 (a): For screens

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

77Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 9 (b): For reports

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

78Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

iii. Assign complexity weight to each object : The weights are used

for three object types i.e., screen, report and 3GL components using
the Table 10.

Table 10: Complexity weights for each level

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

79Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

iv. Determine object points: Add all the weighted object instances to

get one number and this known as object-point count.

v. Compute new object points: We have to estimate the percentage

of reuse to be achieved in a project. Depending on the percentage
reuse, the new object points (NOP) are computed.

(object points) * (100-%reuse)

NOP = ---

100

NOP are the object points that will need to be developed and differ from
the object point count because there may be reuse.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

80Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

vi. Calculation of productivity rate: The productivity rate can be

calculated as:

Productivity rate (PROD) = NOP/Person month

Table 11: Productivity values

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

81Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

vii.Compute the effort in Persons-Months: When PROD is known,

we may estimate effort in Person-Months as:

NOP
Effort in PM = ------------

PROD

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

82Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Consider a database application project with the following characteristics:

I. The application has 4 screens with 4 views each and 7 data tables

for 3 servers and 4 clients.

II. The application may generate two report of 6 sections each from 07

data tables for two server and 3 clients. There is 10% reuse of

object points.

Example: 4.9

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

The developer’s experience and capability in the similar environment is

low. The maturity of organization in terms of capability is also low.

Calculate the object point count, New object points and effort to develop

such a project.

83Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

This project comes under the category of application composition

estimation model.

24 * (100 -10)

NOP = -------------------- = 21.6

100

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Number of screens = 4 with 4 views each

Number of reports = 2 with 6 sections each

From Table 9 we know that each screen will be of medium

complexity and each report will be difficult complexity.

Using Table 10 of complexity weights, we may calculate object point

count.
= 4 x 2 + 2 x 8 = 24

84Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 11 gives the low value of productivity (PROD) i.e. 7.

NOP

Efforts in PM = -----------

PROD

21.6

Efforts = ----------- = 3.086 PM

7

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

85Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Early Design Model

The COCOMO-II models use the base equation of the form

PMnominal = A * (size)B

where

PMnominal = Effort of the project in person months

A = Constant representing the nominal productivity, provisionally set to 2.5

B = Scale factor

Size = Software size

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

86Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont…

RemarksExplanation Scale factor

Precedentness

Development flexibility

Architecture/ Risk

resolution

Reflects the previous

experience on similar

projects. This is applicable to

individuals & organization

both in terms of expertise &

experience

Reflect the degree of flexibility

in the development process.

Reflect the degree of risk

analysis carried out.

Very low means no previous

experiences, Extra high means that

organization is completely familiar with

this application domain.

Very low means a well defined process

is used. Extra high means that the client

gives only general goals.

Very low means very little analysis and

Extra high means complete and through

risk analysis.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Table 12: Scaling factors required for the calculation of the value of B

87Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 12: Scaling factors required for the calculation of the value of B

RemarksExplanation Scale factor

Team cohesion

Process maturity

Reflects the team

management skills.

Reflects the process maturity

of the organization. Thus it is

dependent on SEI-CMM level

of the organization.

Very low means no previous

experiences, Extra high means that

organization is completely familiar with

this application domain.

Very low means organization has no

level at all and extra high means

organization is related as highest level

of SEI-CMM.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

88Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0.001.563.124.686.247.80Process maturity

0.001.102.193.294.385.48Team cohesion

0.001.412.834.245.657.07Architecture/ Risk
resolution

0.001.012.033.044.055.07Development
flexibility

0.001.242.483.724.966.20Precedent ness

Extra
high

Very
high

HighNominalLowVery
low

Scaling factors

Table 13: Data for the Computation of B

The value of B can be calculated as:

B=0.91 + 0.01 * (Sum of rating on scaling factors for the project)

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

89Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Early design cost drivers

There are seven early design cost drivers and are given below:

i. Product Reliability and Complexity (RCPX)

ii. Required Reuse (RUSE)

iii. Platform Difficulty (PDIF)

iv. Personnel Capability (PERS)

v. Personnel Experience (PREX)

vi. Facilities (FCIL)

vii. Schedule (SCED)

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

90Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Post architecture cost drivers

There are 17 cost drivers in the Post Architecture model. These are rated

on a scale of 1 to 6 as given below :

i. Reliability Required (RELY)

ii. Database Size (DATA)

iii. Product Complexity (CPLX)

iv. Required Reusability (RUSE)

The list of seventeen cost drivers is given below :

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

91Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

v. Documentation (DOCU)

vi. Execution Time Constraint (TIME)

vii. Main Storage Constraint (STOR)

viii.Platform Volatility (PVOL)

ix. Analyst Capability (ACAP)

x. Programmers Capability (PCAP)

xi. Personnel Continuity (PCON)

xii. Analyst Experience (AEXP)

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

92Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

xiii. Programmer Experience (PEXP)

xiv. Language & Tool Experience (LTEX)

xv. Use of Software Tools (TOOL)

xvi. Site Locations & Communication Technology between Sites (SITE)

xvii. Schedule (SCED)

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

93Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Mapping of early design cost drivers and post architecture cost

drivers

The 17 Post Architecture Cost Drivers are mapped to 7 Early Design Cost

Drivers and are given in Table 14

SCEDSCED

TOOL, SITEFCIL

AEXP, PEXP, LTEXPREX

ACAP, PCAP, PCONPERS

TIME, STOR, PVOLPDIF

RUSERUSE

RELY, DATA, CPLX, DOCURCPX

Counter part Combined Post

Architecture Cost drivers

Early Design Cost Drivers

Table 14: Mapping table

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

94Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

i. Product Reliability and Complexity (RCPX): The cost driver combines

four Post Architecture cost drivers which are RELY, DATA, CPLX and

DOCU.

Product of cost drivers for early design model

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

95Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

ii. Required Reuse (RUSE) : This early design model cost driver is same as

its Post architecture Counterpart. The RUSE rating levels are (as per

Table 16):

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

96Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

iii. Platform Difficulty (PDIF) : This cost driver combines TIME, STOR

and PVOL of Post Architecture Cost Drivers.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

97Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

iv. Personnel Capability (PERS) : This cost driver combines three Post

Architecture Cost Drivers. These drivers are ACAP, PCAP and PCON.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

98Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

v. Personnel Experience (PREX) : This early design driver combines three

Post Architecture Cost Drivers, which are AEXP, PEXP and LTEX.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

99Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

vi. Facilities (FCIL): This depends on two Post Architecture Cost Drivers,

which are TOOL and SITE.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

100Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

vii.Schedule (SCED) : This early design cost driver is the same as Post

Architecture Counterpart and rating level are given below using table

16.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

101Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The seven early design cost drivers have been converted into numeric

values with a Nominal value 1.0. These values are used for the calculation

of a factor called “Effort multiplier” which is the product of all seven early

design cost drivers. The numeric values are given in Table 15.

Table 15: Early design parameters

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

102Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The early design model adjusts the nominal effort using 7 effort multipliers

(EMs). Each effort multiplier (also called drivers) has 7 possible weights as

given in Table 15. These factors are used for the calculation of adjusted

effort as given below:

PMadjusted effort may very even up to 400% from PMnominal

Hence PMadjusted is the fine tuned value of effort in the early design phase

�
�

�
�
�

�
×= ∏

=

7

7

nominal

i

iadjusted EMPMPM

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

103Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

A software project of application generator category with estimated 50

KLOC has to be developed. The scale factor (B) has low
precedentness, high development flexibility and low team cohesion.

Other factors are nominal. The early design cost drivers like platform

difficult (PDIF) and Personnel Capability (PERS) are high and others

are nominal. Calculate the effort in person months for the

development of the project.

Example: 4.10

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

104Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Here B = 0.91 + 0.01 * (Sum of rating on scaling factors for the project)

= 0.91 + 0.01 * (4.96 + 2.03 + 4.24 + 4.38 + 4.68)

= 0.91 + 0.01(20.29)=1.1129

PMnominal = A*(size)B

= 2.5 * (50)1.1129 = 194.41 Person months

The 7 cost drivers are

PDIF = high (1.29)

PERS = high (0.83)

RCPX = nominal (1.0)

RUSE = nominal (1.0)

PREX = nominal (1.0)

FCIL = nominal (1.0)

SCEO = nominal (1.0)

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

105Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

= 194.41 * [1.29 x 0.83)

= 194.41 x 1.07

= 208.155 Person months

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

106Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Post Architecture Model

The post architecture model is the most detailed estimation model and is

intended to be used when a software life cycle architecture has been

completed. This model is used in the development and maintenance of

software products in the application generators, system integration or

infrastructure sectors.

�
�

�
�
�

�
×= ∏

=

17

7

nominal

i

iadjusted EMPMPM

EM : Effort multiplier which is the product of 17 cost drivers.

The 17 cost drivers of the Post Architecture model are described in the

table 16.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

107Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont…Table 16: Post Architecture Cost Driver rating level summary

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

108Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont…

Table 16: Post Architecture Cost Driver rating level summary

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

109Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Cont…
Table 16: Post Architecture Cost Driver rating level summary

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

110Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 16: Post Architecture Cost Driver rating level summary

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

111Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Product complexity is based on control operations, computational

operations, device dependent operations, data management operations and

user interface management operations. Module complexity rating are given

in table 17.

The numeric values of these 17 cost drivers are given in table 18 for the

calculation of the product of efforts i.e., effort multiplier (EM). Hence PM

adjusted is calculated which will be a better and fine tuned value of effort

in person months.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

112Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

User of simple
graphics user
interface (GUI)
builders.

Single file sub
setting with no data
structure changes,
no edits, no
intermediate files,
Moderately
complex COTS-DB
queries, updates.

No cognizance
needed of
particular
processor or I/O
device
characteristics.
I/O done at
GET/PUT level.

Evaluation of
moderate-level
expressions: e.g.,
D=SQRT(B**2-
4*A*C)

Straight forward
nesting of
structured
programming
operators. Mostly
simple predicates

Low

Simple input
forms, report
generators.

Simple arrays in
main memory.
Simple COTSDB
queries, updates.

Simple read,
write statements
with simple
formats.

Evaluation of
simple
expressions: e.g.,
A=B+C*(D-E)

Straight-line code
with a few non-
nested structured
programming
operators: Dos.
Simple module
composition via
procedure calls or
simple scripts.

Very
Low

User Interface
Management
Operations

Data management
Operations

Device-
dependent
Operations

Computational
Operations

Control
Operations

Table 17: Module complexity ratings Cont…

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

113Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Widget set
development
and
extension.
Simple voice
I/O
multimedia.

Simple triggers
activated by data
stream contents.
Complex data
restructuring.

Operations at
physical I/O
level (physical
storage
address
translations;
seeks, read
etc.)
Optimized I/O
overlap.

Basic numerical
analysis:
multivariate
interpolation,
ordinary
differential
equations. Basic
truncation, round
off concerns.

Highly nested
structured
programming operators
with many compound
predicates. Queue and
stack control.
Homogeneous,
distributed processing.
Single processor soft
real time control.

High

Simple use of
widget set.

Multi-file input
and single file
output. Simple
structural
changes, simple
edits. Complex
COTS-DB
queries,
updates.

I/O processing
includes
device
selection,
status
checking and
error
processing.

Use of standard
maths and
statistical
routines. Basic
matrix/ vector
operations.

Mostly simple nesting.
Some inter module
control Decision tables.
Simple callbacks or
message passing,
including middleware
supported distributed
processing.

Nominal

User Interface
Management
Operations

Data
management
Operations

Device-
dependent
Operations

Computational
Operations

Control Operations

Table 17: Module complexity ratings Cont…

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

114Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Complex
multimedia,
virtual reality.

Highly coupled,
dynamic
relational and
object
structures.
Natural
language data
management.

Device timing
dependent coding,
micro
programmed
operations.
Performance
critical embedded
systems.

Difficult and
unstructured
numerical analysis:
highly accurate
analysis of noisy,
stochastic data.
Complex
parallelization.

Multiple resource
scheduling with
dynamically
changing priorities.
Microcode-level
control. Distributed
hard real time
control.

Extra
High

Moderately
complex
2D/3D,
dynamic
graphics,
multimedia.

Distributed
database
coordination.
Complex
triggers. Search
optimization.

Routines for
interrupt
diagnosis,
servicing,
masking.
Communication
line handling.
Performance
intensive
embedded
systems.

Difficult but
structured
numerical analysis:
near singular
matrix equations,
partial differential
equations. Simple
parallelization.

Reentrant and
recursive coding.
Fixed-priority
interrupt handling.
Task
synchronization,
complex callbacks,
heterogeneous
distributed
processing. Single
processor hard real
time control.

Very
High

User
Interface
Management
Operations

Data
management
Operations

Device-dependent
Operations

Computational
Operations

Control Operations

Table 17: Module complexity ratings

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

115Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 18: 17 Cost Drivers

0.740.871.001.161.37PCAP

0.670.831.001.221.50ACAP

1.301.151.000.87PVOL

1.571.211.061.00STOR

1.671.311.111.00TIME

1.131.061.000.950.89DOCU

1.491.291.141.000.91RUSE

1.661.301.151.000.880.75CPLX

1.191.091.000.93DATA

1.391.151.000.880.75RELY

Extra HighVery
High

HighNominalLowVery Low

RatingCost
Driver

Cont…

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

116Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Table 18: 17 Cost Drivers

1.001.001.001.101.29SCED

0.780.840.921.001.101.25SITE

0.720.861.001.121.24TOOL

0.840.911.001.101.22LTEX

0.810.881.001.121.25PEXP

0.810.891.001.101.22AEXP

0.840.921.001.101.24PCON

Extra HighVery
High

HighNominalLowVery Low

RatingCost
Driver

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

117Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Schedule estimation

Development time can be calculated using PMadjusted as a key factor and the

desired equation is:

100

%
)([))]091.0(2.028.0(

nominal

SCED
PMTDEV

B

adjusted ∗×= −+φ

where � = constant, provisionally set to 3.67

TDEVnominal = calendar time in months with a scheduled constraint

B = Scaling factor

PMadjusted = Estimated effort in Person months (after adjustment)

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

118Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Size measurement

Size can be measured in any unit and the model can be calibrated

accordingly. However, COCOMO II details are:

i. Application composition model uses the size in object points.

ii. The other two models use size in KLOC

Early design model uses unadjusted function points. These function points

are converted into KLOC using Table 19. Post architecture model may

compute KLOC after defining LOC counting rules. If function points are

used, then use unadjusted function points and convert it into KLOC using

Table 19.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

119Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

29C++

128C

128Basic-Interpreted

91Basic-Compiled

64ANSI/Quick/Turbo Basic

213Assembly (Macro)

320Assembly

32APL

49AI Shell

71Ada

SLOC/UFPLanguage

Table 19: Converting function points to lines of code

Cont…

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

120Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

6Spreadsheet

80Report Generator

64Prolog

91Pascal

80Modula 2

64Lisp

105Jovial

64Forth

105Fortan 77

91ANSI Cobol 85

SLOC/UFPLanguage

Table 19: Converting function points to lines of code

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

121Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Consider the software project given in example 4.10. Size and scale factor

(B) are the same. The identified 17 Cost drivers are high reliability (RELY),

very high database size (DATA), high execution time constraint (TIME),

very high analyst capability (ACAP), high programmers capability (PCAP).

The other cost drivers are nominal. Calculate the effort in Person-Months for

the development of the project.

Example: 4.11

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

122Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

Here B = 1.1129

PMnominal = 194.41 Person-months

= 194.41 x (1.15 x 1.19 x 1.11 x 0.67 x 0.87)

= 194.41 x 0.885

= 172.05 Person-months

�
�

�
�
�

�
×= ∏

=

17

7

nominal

i

iadjusted EMPMPM

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

123Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Putnam Resource Allocation Model

Norden of IBM

Rayleigh curve

Model for a range of hardware development projects.

Fig.6: The Rayleigh manpower loading curve

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Persons

Time

Overall Curve

Design and Coding

124Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Putnam observed that this curve was a close

approximation at project level and software subsystem

level.

No. of projects = 150

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

125Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The Norden / Rayleigh Curve

= manpower utilization rate per unit time

a = parameter that affects the shape of the curve

K = area under curve in the interval [0, �]

t = elapsed time

dt

dy

2

2)(at
kate

dt

dy
tm

−== --------- (1)

The curve is modeled by differential equation

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

126Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

On Integration on interval [o, t]

Where y(t): cumulative manpower used upto time t.

y(0) = 0

y(�) = k

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

y(t) = K [1-e-at2] -------------(2)

The cumulative manpower is null at the start of the project, and

grows monotonically towards the total effort K (area under the

curve).

127Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

0]21[2 22

2

2

=−= − atkae
dt

yd at

a
td

2

12 =

“td”: time where maximum effort rate occurs

Replace “td” for t in equation (2)

2

5.02

2

1

3935.0)(

)1(1)(
2

2

d

t

t

t
a

ktyE

eKektyE d

d

=

==

−=�
�

	

A

B
B

C

D
−== −

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

128Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Replace “a” with in the Norden/Rayleigh model. By

making this substitution in equation we have

22

1

dt

2

2

2

22

2
dt

t

d

te
t

K
tm

−

=)(

2

2

2

2
dt

t

d

te
t

K −

=

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

129Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

m (t)

Person

Time (years)

a=2

a=0.5
a=0.222

a=0.125

Fig.7: Influence of parameter ‘a’ on the manpower

distribution

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

130Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

At time t=td, peak manning m (td) is obtained and denoted by mo.

et

k
m

d

o =

k = Total project cost/effort in person-years.

td = Delivery time in years

m0 = No. of persons employed at the peak

e = 2.71828

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

131Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.12

A software development project is planned to cost 95 MY in a period

of 1 year and 9 months. Calculate the peak manning and average rate

of software team build up.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

132Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

persons3394.32
648.175.1

95
==

×

Average rate of software team build up

monthpersonoryearpersons
t

m

d

/56.1/8.18
75.1

330

===

Software development cost k=95 MY

Peak development time td = 1.75 years

Peak manning mo=
et

k

d

Solution

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

133Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.13

Consider a large-scale project for which the manpower requirement is

K=600 PY and the development time is 3 years 6 months.

(a)Calculate the peak manning and peak time.

(b)What is the manpower cost after 1 year and 2 months?

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

134Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(a)We know td=3 years and 6 months = 3.5 years

NOW

=∴ 0m

Solution

600/(3.5x1.648) 104 persons≅

et

K
m

d

=0

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

135Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(b) We know

[]2

1)(at
eKty

−−=

t = 1 year and 2 months

= 1.17 years

041.0
)5.3(2

1

2

1
22

=
×

==
dt

a

[]2)17.1(041.01600)17.1(−−= ey

= 32.6 PY

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

136Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Slope of manpower distribution curve at start time t=0 has

some useful properties.

)21(2)(' 2

2

2
2

atkae
dt

yd
tm

at −== −

Then, for t=0

222

2
2)0('

dd t

K

t

K
Kam ===

Difficulty Metric

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

137Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

The ratio is called difficulty and denoted by D,

which is measured in person/year :

2

dt

K

D= persons/year2

dt

k

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

138Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Project is difficult to develop

if

Manpower demand

is high

When time schedule

is short

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

139Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Peak manning is defined as:

Thus difficult projects tend to have a higher peak

manning for a given development time, which is in line

with Norden’s observations relative to the parameter “a”.

et

k
m

d

=0

dd t

em

t

k
D 0

2
==

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

140Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

D is dependent upon “K”. The derivative of D relative to

“K” and “td” are

2

3

2
yearpersons

t

k
tD

d

d /)('
−

=

2

2

1
)(' −= year

t
kD

d

Manpower buildup

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

141Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

D1(K) will always be very much smaller than the absolute value of

D1(td). This difference in sensitivity is shown by considering two

projects

Project A : Cost = 20 PY & td = 1 year

Project B : Cost = 120 PY & td = 2.5 years

Project A : D` (td) = -40 & D`(K) = 1

Project B : D` (td) = -15.36 & D`(K) = 0.16

The derivative values are

This shows that a given software development is time sensitive.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

142Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Putnam observed that

Difficulty derivative relative to time

Behavior of s/w development

If project scale is increased, the development time also

increase to such an extent that remains constant

around a value which could be 8,15,27.

3

dt

k

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

143Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

It is represented by D0 and can be expressed as:

2

30 / yearperson
t

k
D

d

=

D0 =8, new s/w with many interfaces & interactions

with other systems.

D0 =15, New standalone system.

D0 =27, The software is rebuild form existing software.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

144Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.14

Consider the example 4.13 and calculate the difficulty and

manpower build up.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

145Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

We know

Solution

2

dt

K
D =Difficulty

yearperson /49
)5.3(

600
2

==

Manpower build up can be calculated by following equation

30

dt

K
D =

2

3
/14

)5.3(

600
yearperson==

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

146Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Productivity = No. of LOC developed per person-month

P � D�

Avg. productivity

P =

codeproducetoused
manpowercumulative

producedLOC

Productivity Versus Difficulty

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

147Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

P = S/E

)3935.0(
3

2

2
k

t

k
S

d

−

�
�

�
�
�

�
= φ

343139350
//. dtKS φ=

).(
/

/

/

KD

EDS

DP

3935032

32

32

−

−

−

=

=

=

φ

φ

φ

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

148Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

c

Technology Factor

Programming

environment

Hardware

constraints
Complexity

Experience

φ39.0

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

149Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

C 610 – 57314

K : P-Y

T : Years

3/43/1
d

t

CKS =

3/43/1

.
−−

= d
t

KSC

CStK d /3/43/1 =
3

4

1
�
	

A
B
C

D
=

C

S

t
K

d

The trade off of time versus cost

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

150Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

C = 5000

S = 5,00,000 LOC

3

4
)100(

1

dt
K =

123463.0

66643.5

39064.0

16005.0

K (P-Y)td (years)

Table 20: (Manpower versus development time)

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

151Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Development Subcycle

All that has been discussed so far is related to project life cycle as

represented by project curve

Manpower

distribution

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Fig.8: Project life cycle

Maintenance

Project

Test &

Validation
Design code

developmentRequirements

& Specification

Time

152Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Project curve is the addition of two curves

Development

Curve

Test &

Validation

Curve

Project life cycle

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

153Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

An examination of md(t) function shows a non-zero value of md

at time td.

This is because the manpower involved in design & coding is

still completing this activity after td in form of rework due to

the validation of the product.

Nevertheless, for the model, a level of completion has to be

assumed for development.

It is assumed that 95% of the development will be completed

by the time td.

md (t) = 2kdbt e-bt2

yd (t) = Kd [1-e-bt2]

∴

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

154Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

95.01
)(2

=−=
−bt

e
K

ty

d

d

22

1

odt
b =

Tod: time at which development curve exhibits a peak

manning.

6

d
od

t
t =

We may say that∴

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

155Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Relationship between Kd & K must be established.

At the time of origin, both cycles have the same slope.

o

d

od

d

do dt

dm

t

K

t

K

dt

dm
�
	

A
B
C

D
===�

	

A
B
C

D
22

Kd=K/6

22

od

d

d t

K

t

K
D ==

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

156Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

This does not apply to the manpower build up D0.

Conte investigated that

Larger projects reasonable

Medium & small projects overestimate

33
6 od

d

d

o
t

K

t

K
D ==

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

157Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example: 4.15

A software development requires 90 PY during the total development

sub-cycle. The development time is planned for a duration of 3 years

and 5 months

(a)Calculate the manpower cost expended until development time

(b) Determine the development peak time

(c) Calculate the difficulty and manpower build up.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

158Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(a) Duration td = 3.41 years

Solution

95.0
)(

=
d

dd

K

ty

9095.0)(×=dd tY

= 85.5 PY

We know from equation 95.01
)(

=−=
− dbt

e
K

ty

d

d

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

159Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(b) We know from equation

6

d
od

t
t =

years
t

t d
od 39.1449.2/41.3

6
===

months17≅

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

160Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(c) Total Manpower development

PYKK d 5406906 =×==

46)41.3/(540/ 22 === dtKD

95.0/)(ddd tyK =

= 85.5 / 0.95 = 90

persons/years

6.13)41.3/(540 3

3
===

d

o
t

K
D persons/years2

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

161Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example:4.16

A software development for avionics has consumed 32 PY

up to development cycle and produced a size of 48000

LOC. The development of project was completed in 25

months. Calculate the development time, total manpower

requirement, development peak time, difficulty,

manpower build up and technology factor.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

162Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution:

PY
tY

k dd
d 7.33

95.0

32

95.0

)(
===

monthsyears
t

t d
od 10850

6
=== .

)(

K = 6Kd = 6 x 33.7 = 202 PY

yearspesons
t

k
D

d

/7.46
)08.2(

202
22

===

Development time td = 25 months = 2.08 years

Total manpower development

Development peak time

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

163Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2

330 522
082

202
yearPersons

t

k
D

d

/.
).(

===

3/43/1 −−= dtSKC

= 3077

Technology factor

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

164Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example 4.17

What amount of software can be delivered in 1 year 10 months in an

organization whose technology factor is 2400 if a total of 25 PY is

permitted for development effort.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

165Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution:

3/43/1

dtCKS =

= 2400 x 5.313 x 2.18 = 27920 LOC

We know

td = 1.8 years

Kd = 25 PY

K = 25 x 6 = 150 PY

C = 2400

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

166Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Example 4.18

The software development organization developing real time

software has been assessed at technology factor of 2200. The

maximum value of manpower build up for this type of

software is Do=7.5. The estimated size to be developed is

S=55000 LOC.

(a) Determine the total development time, the total

development manpower cost, the difficulty and the

development peak manning.

(b) The development time determined in (a) is considered too

long. It is recommended that it be reduced by two months.

What would happen?

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

167Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

3/43/1

dtCKS =

4

3

dkt
c

s
=�

	

A
B
C

D

7

3

dotD
C

S
=�

	

A
B
C

D

7/1
3

0

1

�
�
�

�

�
�
�

�
�
	

A
B
C

D
=

C

S

D
td

We have

which is also equivalent to

then

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

168Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

25=
C

S
Since

td = 3 years

PYKd 75.33
06

202
==

D = D0td = 22.5 persons / year

years
t

t d
od 2.1

6

3

6
===

Total development manpower cost

PYtDK d 202275.73

0 =×==

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

169Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Md(t) = 2kd bte-bt2

Yd(t) = kd (1-e-bt2)

Here t = tod

2/1−== eDtm odod

= 22.5 x 1.2 x .606 = 16 persons

Peak manning

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

170Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

III. If development time is reduced by 2 months

Developing

s/w at higher

manpower

build-up

Producing

less software

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

171Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3

7

1
�
	

A
B
C

D
=

C

S

t
D

d

o

Now td = 3 years – 2 months = 2.8 years

yearspersonsDo /.)./()(6118225 73 ==

PYtDk d 2543

0 ==

(i) Increase Manpower Build-up

PYKd 4.42
6

254
==

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

172Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

D = D0td = 32.5 persons / year

The peak time is tod = 1.14 years

Peak manning mod = Dtod e-0.5

= 32.5 x 1.14 x 0.6

= 22 persons

Note the huge increase in peak manning & manpower

cost.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

173Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

696.10119)8.2(5.7 77

0

3

=×==�
	

A
B
C

D
dtD

C

S

62989.21

3

=�
	

A
B
C

D

C

S

Then for C=2200

S=47586 LOC

(ii) Produce Less Software

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

174Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

A����C�F�F��	������	�F��FC�D�A����C�F�F��	������	�F��FC�D�A����C�F�F��	������	�F��FC�D�A����C�F�F��	������	�F��FC�D�

Example 4.19

A stand alone project for which the size is estimated at 12500

LOC is to be developed in an environment such that the

technology factor is 1200. Choosing a manpower build up

Do=15, Calculate the minimum development time, total

development man power cost, the difficulty, the peak manning,

the development peak time, and the development productivity.

175Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Solution

3/43/1

dtCKS =

Size (S) = 12500 LOC

Technology factor (C) = 1200

Manpower buildup (Do) = 15

Now

3/43/1

dtK
C

S
=

4

3

dKt
C

S
=�

	

A
B
C

D

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

176Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3

d

o
t

K
DknowweAlso =

7

3

dotD
C

S
=�

	

A
B
C

D

7/1
3

15

)416.10(
�
�

�
�
�

�
=dt

Substituting the values, we get

33

dodo tDtDK ==

Hence

7

3

15
1200

12500
dt=�

	

A
B
C

D

yearstd 85.1=

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

177Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(i) Hence Minimum development time (td)=1.85 years

(ii) Total development manpower cost
6

K
Kd =

315 dtK =

PY
K

Kd 83.15
6

97.94

6
===

=15(1.85)3=94.97 PY

Hence

(iii) Difficulty yearPersons
t

K
D

d

/.
).(

.
7527

851

9794
22

===

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

178Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(iv) Peak Manning
et

K
m

d

=0

Persons15.31
648.185.1

97.94
=

×
=

(v) Development Peak time

6

d
od

t
t =

years755.0
449.2

85.1
==

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

179Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

(vi) Development Productivity

)(

)(.

dKeffort

ScodeoflinesofNo
=

PYLOC /6.789
83.15

12500
==

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

180Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

� We Software developers are extremely optimists.

� We assume, everything will go exactly as planned.

� Other view

not possible to predict what is going to happen ?

Software surprises

Never good news

Software Risk Management

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

181Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Risk management is required to reduce this surprise

factor

Dealing with concern before it becomes a crisis.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Quantify probability of failure & consequences of failure.

182Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

What is risk ?

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Tomorrow’s problems are today’s risks.

“Risk is a problem that may cause some loss or

threaten the success of the project, but which has

not happened yet”.

183Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Risk management is the process of identifying addressing

and eliminating these problems before they can damage

the project.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Current problems &

Potential Problems

184Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Capers Jones has identified the top five risk factors that

threaten projects in different applications.

1. Dependencies on outside agencies or factors.

Typical Software Risk

• Availability of trained, experienced persons

• Inter group dependencies

• Customer-Furnished items or information

• Internal & external subcontractor relationships

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

185Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

2. Requirement issues

Uncertain requirements

Wrong product

or

Right product badly

Either situation results in unpleasant surprises and

unhappy customers.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

186Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

• Lack of clear product vision

• Unprioritized requirements

• Lack of agreement on product requirements

• New market with uncertain needs

• Rapidly changing requirements

• Inadequate Impact analysis of requirements changes

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

187Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

3. Management Issues

Project managers usually write the risk management

plans, and most people do not wish to air their

weaknesses in public.

• Inadequate planning

• Inadequate visibility into actual project status

• Unclear project ownership and decision making

• Staff personality conflicts

• Unrealistic expectation

• Poor communication

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

188Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4. Lack of knowledge

• Inadequate training

• Poor understanding of methods, tools, and

techniques

• Inadequate application domain experience

• New Technologies

• Ineffective, poorly documented or neglected

processes

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

189Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

5. Other risk categories

• Unavailability of adequate testing facilities

• Turnover of essential personnel

• Unachievable performance requirements

• Technical approaches that may not work

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

190Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Risk

Management

Risk

Assessment

Risk Control

Risk Identification

Risk Analysis

Risk Prioritization

Risk Management

Planning

Risk Monitoring

Risk Resolution

Risk Management Activities

Fig. 9: Risk Management

Activities

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

191Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Identification of risks

Risk Assessment

Risk analysis involves examining how project outcomes

might change with modification of risk input variables.

Risk prioritization focus for severe risks.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

Risk exposure: It is the product of the probability of incurring

a loss due to the risk and the potential magnitude of that loss.

192Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Another way of handling risk is the risk avoidance. Do not do

the risky things! We may avoid risks by not undertaking

certain projects, or by relying on proven rather than cutting

edge technologies.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

193Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

Risk Management Planning produces a plan for dealing with

each significant risks.

Risk Control

� Record decision in the plan.

Risk resolution is the execution of the plans of dealing with

each risk.

��������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE���������	A��B�C�	AD�EEFE�

194Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.1 After the finalization of SRS, we may like to estimate

(a) Size (b) Cost

(c) Development time (d) All of the above.

4.2 Which one is not a size measure for software

(a) LOC (b) Function Count

(c) Cyclomatic Complexity (d) Halstead’s program length

4.3 Function count method was developed by

(a) B.Beizer (b) B.Boehm

(c) M.halstead (d) Alan Albrecht

4.4 Function point analysis (FPA) method decomposes the system into functional
units. The total number of functional units are

(a) 2 (b) 5

(c) 4 (d) 1

��D�F�D�	���FC�	�����F�E�
Note: Choose most appropriate answer of the following questions:

195Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.6 Function point can be calculated by

(a) UFP * CAF (b) UFP * FAC

(c) UFP * Cost (d) UFP * Productivity

��D�F�D�	���FC�	�����F�E�

4.7 Putnam resource allocation model is based on

(a) Function points

(b) Norden/ Rayleigh curve

(c) Putnam theory of software management

(d) Boehm’s observation on manpower utilisation rate

4.5 IFPUG stand for

(a) Initial function point uniform group

(b) International function point uniform group

(c) International function point user group

(d) Initial function point user group

4.8 Manpower buildup for Putnam resource allocation model is

22
yearpersonstKa d //)(23

yearpersonstKb d //)(

yearpersonstKc d //)(2
yearpersonstKd d //)(3

196Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.9 COCOMO was developed initially by

(a) B.W.Bohem (b) Gregg Rothermal

(c) B.Beizer (d) Rajiv Gupta

��D�F�D�	���FC�	�����F�E�

4.10 A COCOMO model is

(a) Common Cost estimation model

(b) Constructive cost Estimation model

(c) Complete cost estimation model

(d) Comprehensive Cost estimation model

4.11 Estimation of software development effort for organic software is COCOMO is

(a) E=2.4(KLOC)1.05PM (b) E=3.4(KLOC)1.06PM

(c) E=2.0(KLOC)1.05PM (d) E-2.4(KLOC)1.07PM

4.12 Estimation of size for a project is dependent on

(a) Cost (b) Schedule

(c) Time (d) None of the above

4.13 In function point analysis, number of Complexity adjustment factor are

(a) 10 (b) 20

(c) 14 (d) 12

197Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.14 COCOMO-II estimation model is based on

(a) Complex approach (b) Algorithm approach

(c) Bottom up approach (d) Top down approach

4.15 Cost estimation for a project may include

(a) Software Cost (b) Hardware Cost

(c) Personnel Costs (d) All of the above

4.16 In COCOMO model, if project size is typically 2-50 KLOC, then which mode
is to be selected?

(a) Organic (b) Semidetached

(c) Embedded (d) None of the above

��D�F�D�	���FC�	�����F�E�

4.17 COCOMO-II was developed at

(a) University of Maryland (b) University of Southern California

(c) IBM (d) AT & T Bell labs

4.18 Which one is not a Category of COCOMO-II

(a) End User Programming (b) Infrastructure Sector

(c) Requirement Sector (d) System Integration

198Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

��D�F�D�	���FC�	�����F�E�

4.19 Which one is not an infrastructure software?

(a) Operating system (b) Database management system

(c) Compilers (d) Result management system

4.20 How many stages are in COCOMO-II?

(a) 2 (b) 3

(c) 4 (d) 5

4.21 Which one is not a stage of COCOMO-II?

(a) Application Composition estimation model

(b) Early design estimation model

(c) Post architecture estimation model

(d) Comprehensive cost estimation model

4.22 In Putnam resource allocation model, Rayleigh curve is modeled by the equation

2

2)()(at
eattma

−=
2

2)()(at
eKttmb

−=
2

2)()(at
eKattmc

−=
2

2)()(at
eKbttmd

−=

199Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

4.23 In Putnam resource allocation model, technology factor ‘C’ is defined as

4.24 Risk management activities are divided in

(a) 3 Categories (b) 2 Categories

(c) 5 Categories (d) 10 Categories

��D�F�D�	���FC�	�����F�E�

4.25 Which one is not a risk management activity?

(a) Risk assessment (b) Risk control

(c) Risk generation (d) None of the above

3/43/1)(−−= dtSKCa 3/43/1)(dtSKCb =
3/43/1)(−= dtSKCc 3/43/1)(dtSKCd −=

200Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

����CF���

4.1 What are various activities during software project planning?

4.2 Describe any two software size estimation techniques.

4.3 A proposal is made to count the size of ‘C’ programs by number of
semicolons, except those occurring with literal strings. Discuss the
strengths and weaknesses to this size measure when compared with the
lines of code count.

4.4 Design a LOC counter for counting LOC automatically. Is it language
dependent? What are the limitations of such a counter?

4.5 Compute the function point value for a project with the following
information domain characteristics.

Number of user inputs = 30

Number of user outputs = 42

Number of user enquiries = 08

Number of files = 07

Number of external interfaces = 6

Assume that all complexity adjustment values are moderate.

201Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

����CF���

4.6 Explain the concept of function points. Why FPs are becoming
acceptable in industry?

4.7 What are the size metrics? How is function point metric advantageous
over LOC metric? Explain.

4.8 Is it possible to estimate software size before coding? Justify your answer
with suitable example.

4.9 Describe the Albrecht’s function count method with a suitable example.

4.10 Compute the function point FP for a payroll program that reads a file of
employee and a file of information for the current month and prints
cheque for all the employees. The program is capable of handling an
interactive command to print an individually requested cheque
immediately.

202Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

����CF���

4.11 Assume that the previous payroll program is expected to read a file
containing information about all the cheques that have been printed. The
file is supposed to be printed and also used by the program next time it is
run, to produce a report that compares payroll expenses of the current
month with those of the previous month. Compute functions points for
this program. Justify the difference between the function points of this
program and previous one by considering how the complexity of the
program is affected by adding the requirement of interfacing with
another application (in this case, itself).

4.12 Explain the Walson & Felix model and compare with the SEL model.

4.13 The size of a software product to be developed has been estimated to be
22000 LOC. Predict the manpower cost (effort) by Walston-Felix Model
and SEL model.

4.14 A database system is to be developed. The effort has been estimated to
be 100 Persons-Months. Calculate the number of lines of code and
productivity in LOC/Person-Month.

203Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

����CF���

4.15 Discuss various types of COCOMO mode. Explain the phase wise
distribution of effort.

4.16 Explain all the levels of COCOMO model. Assume that the size of an
organic software product has been estimated to be 32,000 lines of code.
Determine the effort required to developed the software product and the
nominal development time.

4.17 Using the basic COCOMO model, under all three operating modes,
determine the performance relation for the ratio of delivered source code
lines per person-month of effort. Determine the reasonableness of this
relation for several types of software projects.

4.18 The effort distribution for a 240 KLOC organic mode software
development project is: product design 12%, detailed design 24%, code
and unit test 36%, integrate and test 28%. How would the following
changes, from low to high, affect the phase distribution of effort and the
total effort: analyst capability, use of modern programming languages,
required reliability, requirements volatility?

204Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

����CF���

4.19 Specify, design, and develop a program that implements COCOMO.
Using reference as a guide, extend the program so that it can be used as a
planning tool.

4.20 Suppose a system for office automation is to be designed. It is clear
from requirements that there will be five modules of size 0.5 KLOC, 1.5
KLOC, 2.0 KLOC, 1.0 KLOC and 2.0 KLOC respectively. Complexity,
and reliability requirements are high. Programmer’s capability and
experience is low. All other factors are of nominal rating. Use COCOMO
model to determine overall cost and schedule estimates. Also calculate
the cost and schedule estimates for different phases.

4.21 Suppose that a project was estimated to be 600 KLOC. Calculate the
effort and development time for each of the three modes i.e., organic,
semidetached and embedded.

4.22 Explain the COCOMO-II in detail. What types of categories of projects
are identified?

205Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

����CF���

4.24 Describe various stages of COCOMO-II. Which stage is more popular
and why?

4.25 A software project of application generator category with estimated size
of 100 KLOC has to be developed. The scale factor (B) has high
percedentness, high development flexibility. Other factors are nominal.
The cost drivers are high reliability, medium database size, high
Personnel capability, high analyst capability. The other cost drivers are
nominal. Calculate the effort in Person-Months for the development of
the project.

4.27 Describe the trade-off between time versus cost in Putnam resource
allocation model.

4.26 Explain the Putnam resource allocation model. What are the limitations
of this model?

4.23 Discuss the Infrastructure Sector of COCOMO-II.

4.28 Discuss the Putnam resources allocation model. Derive the time and
effort equations.

206Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

����CF���

4.30 Obtain software productivity data for two or three software development
programs. Use several cost estimating models discussed in this chapter.
How to the results compare with actual project results?

4.31 It seems odd that cost and size estimates are developed during software
project planning-before detailed software requirements analysis or design
has been conducted. Why do we think this is done? Are there
circumstances when it should not be done?

4.29 Assuming the Putnam model, with S=100,000 , C=5000, Do=15,
Compute development time td and manpower development Kd.

4.32 Discuss typical software risks. How staff turnover problem affects
software projects?

4.33 What are risk management activities? Is it possible to prioritize the risk?

207Software Engineering (3rd ed.), By K.K Aggarwal & Yogesh Singh, Copyright © New Age International Publishers, 2007

����CF���

4.35 What is risk? Is it economical to do risk management? What is the effect
of this activity on the overall cost of the project?

4.36 There are significant risks even in student projects. Analyze a student
project and list all the risk.

4.34 What is risk exposure? What techniques can be used to control each
risk?

Data Flow Diagrams

(DFD)

& Context diagrams

Data Flow Diagrams

(DFD)

& Context diagrams

Data Flow Diagrams
 A graphical tool, useful for communicating with

users, managers, and other personnel.

 Used to perform structured analysis to determine
logical requirements.

 Useful for analyzing existing as well as proposed
systems.

 Focus on the movement of data between external
entities and processes, and between processes and
data stores.

 A relatively simple technique to learn and use.

Why DFD ?
 Provides an overview of-

 What data a system processes

 What transformations are performed

 What data are stored

 What results are produced and where they flow

 Graphical nature makes it a good communication tool
between-

 User and analyst

 Analyst and System designer

DFD elements

Source/Sinks (External entity)

Processes

Data Stores

Data flows

5

Symbols Used:

Symbol
Gane & Sarson

Symbol
DeMarco &

Yourdan Symbol

External Entity

Process

Data store

Data flow

S.Sakthybaalan

6

Descriptions :

 External Entity - people or organisations that send data
into the system or receive data from the system.

 Process - models what happens to the data

i.e. transforms incoming data into outgoing data.

 Data Store - represents permanent data that is used by
the system.

 Data Flow - models the actual flow of the data between
the other elements.

S.Sakthybaalan

7

External Entity  Noun

Data Flow  Names of data

Process  verb phrase

Data Store  Noun

Symbol naming

S.Sakthybaalan

External Entities

 They either supply or receive data

• Source Ȃ Entity that supplies data to the
system.

• Sink Ȃ Entity that receives data from the
system.

 They do not process data

Processes

 Work or actions performed on data (inside the system)

 Straight line with incoming arrows are input data flows

 Straight lines with outgoing arrows are output data flows

 Labels are assigned to Data flow. These aid documentation

1.
STORES

Stores demand
note

Delivery Slip

Issue Slip
1.0

Produce
Grade
Report

Grade Detail Grade Report

Processes

 Can have more than one outgoing data flow
or more than one incoming data flow

1.0

Grade
Student

Work

Submitted Work
Graded Work

Student Grade

3.0

Calculated
Gross
Pay

Hours Worked

Pay Rate
Gross Pay

Processes

 Can connect to any other symbol (including another
process symbol)

 Contain the business logic, also called business
rules

 Referred to as a black box

1.0

Verify
Order

2.0

Assemble
Order

Order Accepted Order
Inventory
Change

Data Stores

 A Data Store is a repository of data

 Data can be written into the data store. This is
depicted by an incoming arrow

 Data can be read from a data store. This is depicted
by an outgoing arrow

Data StoresD1 Data StoresD1 Data StoresD1

Writing Reading

Data store

Data store

Data Flows

 Data in motion
 Marks movement of data through the system

- a pipeline to carry data.
 Connects the processes, external entities and

data stores.

Data Flow

Data Flow

 Generally unidirectional, If same data flows in
both directions, double-headed arrow can be
used.

 Can represent flow between process and data
store by two separate arrows

2.1

Post
Payment

Accounts
Receivable

D1

Payment Detail

Invoice Detail

Decomposition Of DFD

Levels Description Explanation

Level 0 Context diagram
Contains only one
process

Level 1 Overview diagram
Utilizes all four
elements

Level 2 Detailed diagram
A breakdown of a
level 2 process

There is no rule as to how many levels of DFD that can be used.

17

Rules for Level 0 Diagram :

 1 process represents the entire system.

 Data arrows show input and output.

 Data Stores NOT shown. They are within the system.

S.Sakthybaalan

18

Layers of DFD Abstraction for Course Registration System

A Context Diagram (Level 0)

 The major information flows between the entities
and the system.

 A Context Diagram addresses only one process.

19

20

Rules for Level 1 Diagram :

 Level 1 DFD, must balance with the context diagram it

describes.

 Input going into a process are different from outputs

leaving the process.

 Data stores are first shown at this level.

21

Rules for Level 2 Diagram :

 Level 2 DFD must balance with the Level 1 it describes.

 Input going into a process are different from outputs

leaving the process.

 Continue to show data stores.

22

Numbering

 On level 1 processes are numbered 1,2,3ǥ

 On level 2 processes are numbered x.1, x.2, x.3ǥ where
x is the number of the parent level 1 process.

 Number is used to uniquely identify process not to
represent any order of processing

 Data store numbers usually D1, D2, D3...

S.Sakthybaalan

Rules of Data Flow

 Data can flow from

External entity to process

Process to external entity

Process to store and back

Process to process

 Data cannot flow from

 External entity to external
entity

 External entity to store

 Store to external entity

 Store to store

24

Common errors in DFD

S.Sakthybaalan

25

 Miracle (Spontaneous
generation)

 Black Hole

 Gray Hole

1.0

Produce
Grade
Report

Grade Report

1.0

Produce
Grade
Report

Grade Detail

1.0

Produce
Grade
Report

Grade ReportStudent name

Three INCORRECT Data Flow

Good Style in Drawing DFD

 Use meaningful names for data flows, processes and
data stores.

 Use top down development starting from context
diagram and successively levelling DFD

 Only previously stored data can be read

 A process can only transfer input to output. It cannot
create new data

 Data stores cannot create new data

Creating DFDs

 Create a preliminary Context Diagram.

 Identify Use Cases, i.e. the ways in which users most
commonly use the system.

 Create DFD fragments for each use case.

 Create a Level 0 diagram from fragments.

 Decompose to Level ͝ǡ͞ǡǥ
 Validate DFDs with users.

Creating the Context Diagram
 Draw one process representing

the entire system (process 0)

 Find all inputs and outputs that
come from or go to external
entities; draw as data flows.

 Draw in external entities as the
source or destination of the
data flows.

Creating Level 0 Diagram
 Combine the set of

DFD fragments into
one diagram.

 Generally move from
top to bottom, left to
right.

 Minimize crossed lines.

Creating Level 1 Diagram
 Each use case is turned into its own DFD.

 Take the steps listed on the use case and depict
each as a process on the level 1 DFD.

 Inputs and outputs listed on use case become data
flows on DFD.

 Include sources and destinations of data flows to
processes and stores within the DFD.

 May also include external entities for clarity.

When to stop decomposing

DFDs?

Ideally, a DFD has at least
three levels.

When the system becomes
primitive i.e. lowest level
is reached and further
decomposition is useless.

Validating DFD

 Check for syntax errors to
assure correct DFD structure.

 Check for semantics errors to
assure accuracy of DFD
relative to actual/desired
system.

University

Admission

System

0

Student

Student Information

Report

Staff

Admission Approval

or Rejection

Report Request

Context Diagram

DFD for University Admission System

Perform

Intake

Procedure

1

Student

Student

Information

Report

Admission Approval

or Rejection

Report Request

Approved

Application

Verified

Approved

Application

Data

Query

Data

Request for Student

Information Maintenance

Other Student Data

Data Item

Prompt

Staff
Data

Items

Generate

Reports

3

Maintain

Student

Information

2

Student

Name & ID

Student DataD1

Prior

Application

Data

Level 0

Receive

Admission

Application

1.1

Student

Student

Information

Application Approval

or Rejection

Verify

Admission

Application

1.2

Review

Admission

Application

1.3

Admission Application

Student DataD1

Verified

Admission

Application

Application

Request

Application

Data

Student Name

and ID

Prior

Application

Data

Approved Application

Level 1 Process 1, Perform Intake Procedure

Add New

Student

2.2

Edit Existing

Student

2.3

Delete

Existing

Student

2.4

Student DataD1

Cancel

Operation

2.5

Approved Application to Edit

ID of Student

to Delete

Determination to

Cancel Operation

Determine

Operation

2.1
Approved Application

Request for Student

Information Maintenance

Approved Application

to Add

Verified Approved

ApplicationVerified Changed

Student Data

Verified ID of

Student to Delete

Level 1 Process 2, Maintain Student
Information

Context Diagram

DFD for Lemonade Stand

0.0

Lemonade

System

EMPLOYEECUSTOMER

Pay

Payment

Order

VENDOR

Payment
Purchase Order

Production Schedule

Received Goods
Time Worked

Sales Forecast

Product Served

Level 0

2.0

Production
EMPLOYEE

Production

Schedule

1.0

Sale

3.0

Procure-

ment

Sales Forecast

Product Ordered

CUSTOMER

Pay

Payment

Customer Order

VENDOR

Payment

Purchase Order
Order

Decisions

Received Goods

Time Worked

Inventory

Product Served

4.0

Payroll

Level 1, Process 1

1.3

Produce

Sales

Forecast
Sales ForecastPayment

1.1

Record

Order

Customer Order

ORDER

1.2

Receive

Payment

PAYMENT

Severed Order

Request for Forecast

CUSTOMER

Level 1, Process 2 and Process 3

2.1

Serve

Product

Product Order

ORDER

2.2

Produce

Product

INVENTORTY

Quantity Severed

Production

Schedule

RAW

MATERIALS

2.3

Store

Product

Quantity Produced &

Location Stored

Quantity Used

Production Data

3.1

Produce

Purchase

Order

Order Decision
PURCHASE

ORDER

3.2

Receive

Items

Received

Goods

RAW

MATERIALS

3.3

Pay

Vendor

Quantity

Received

Quantity On-Hand

RECEIVED

ITEMS

VENDOR

Payment Approval

Payment

Level 1, Process 4

Time Worked

4.1

Record

Time

Worked

TIME CARDS

4.2

Calculate

Payroll

Payroll Request

EMPLOYEE

4.3

Pay

Employe

e

Employee ID

PAYROLL

PAYMENTS

Payment Approval

Payment

Unpaid time cards

P
ro

ce
ss

 D
e

co
m

p
o

si
ti

o
n

4.1

Record

Time

Worked

4.2

Calculate

Payroll

4.3

Pay

Employe

e

3.1

Produce

Purchase

Order

3.2

Receive

Items

3.3

Pay

Vendor

2.1

Serve

Product

2.2

Produce

Product

2.3

Store

Product

1.1

Record

Order

1.2

Receive

Payment

2.0

Production

1.0

Sale

3.0

Procure-

ment

4.0

Payroll

0.0

Lemonade

System

Level 0 Level 1Context Level

Logical and Physical DFD

 DFDs considered so far are called logical DFDs

 A physical DFD is similar to a document flow diagram

 It specifies who does the operations specified by the
logical DFD

 Physical DFD may depict physical movements of the
goods

 Physical DFDs can be drawn during fact gathering
phase of a life cycle

Physical DFD for Cheque Encashment

Cash

Clerk

Verify A/C

Signature Update

Balance

Bad Cheque

Store chequesCustomer Accounts

Cheque

Cheque with

Token number

Cashier

Verify Token

Take Signature

Entry in Day Book

CUSTOMER

Token

Token

Logical DFD for Cheque Encashment

Cash

Retrieve

Customer

Record

Cheque

with token

Store cheques
Customer Accounts

Cheque

Cheque with

Token

Entry in Day

Book

CUSTOMER

Token Slip

Cheque Check

Balance,

Issue token

Store Token

no &

cheques

Search &

match token

Update

Daily cash

book

Token Slip

or Cheque

Questions

? ? ?

 In a DFD external entities are represented by a
a. Rectangle

b. Ellipse

c. Diamond shaped box

d. Circle

 External Entities may be a
a. Source of input data only

b. Source of input data or destination of results

c. Destination of results only

d. Repository of data

 A data store in a DFD represents
a. A sequential file

b. A disk store

c. A repository of data

d. A random access memory

 By an external entity we mean a
a. Unit outside the system being designed which can be controlled by an analyst

b. Unit outside the system whose behaviour is independent of the system being
designed

c. A unit external to the system being designed

d. A unit which is not part of DFD

 A data flow can
a. Only enter a data store

b. Only leave a data store

c. Enter or leave a data store

d. Either enter or leave a data store but not both

 A circle in a DFD represents
a. A data store

b. A an external entity

c. A process

d. An input unit

Thanks for

your

Cooperation

SOFTWARE TESTING – AN OVERVIEW

Why are we Training 

Why Testing is necessary

Testing Techniques

Test Planning

Test Specification and Execution

Psychology of Testing

Defect Management

Test Automation

What is Testing?

 Testing is a process used to identify the correctness,
completeness and quality of developed computer
software. Testing, apart from finding errors, is also used
to test performance, safety, fault-tolerance or security.

 Software testing is a broad term that covers a variety of
processes designed to ensure that software
applications function as intended, are able to handle
the volume required, and integrate correctly with other
software applications.

What is a “bug”?

 Error: a human action that produces an
incorrect result

 Fault: a manifestation of an error in software
- also known as a defect or bug

- if executed, a fault may cause a failure

 Failure: deviation of the software from its
expected delivery or service
- (found defect)

Failure is an event; fault is a state of

the software, caused by an error

Error - Fault - Failure

A person makes
an error ...

… that creates a
fault in the
software ...

… that can cause
a failure

in operation

Reliability versus faults

 Reliability: the probability that software will not
cause the failure of the system for a specified
time under specified conditions

- Can a system be fault-free? (zero faults, right first
time)

- Can a software system be reliable but still have
faults?

- Is a “fault-free” software application always
reliable?

Reliability versus faults

 Reliability: the probability that software will not
cause the failure of the system for a specified
time under specified conditions

- Can a system be fault-free? (zero faults, right first
time)

- Can a software system be reliable but still have
faults?

- Is a “fault-free” software application always
reliable?

Why do faults occur in software?

 Software is written by human beings
- who know something, but not everything

- who have skills, but aren‟t perfect
- who do make mistakes (errors)

 Under increasing pressure to deliver to strict
deadlines
- no time to check but assumptions may be wrong

- systems may be incomplete

 If you have ever written software ...

What do software faults cost?

 Huge sums
- Ariane5 ($7billion)

- Mariner space probe to Venus ($250m)

- American Airlines ($50m)

 Very little or nothing at all
- minor inconvenience

- no visible or physical detrimental impact

 Software is not “linear”:
- small input may have very large effect

Safety-critical systems

 software faults can cause death or injury
- radiation treatment kills patients (Therac-25)

- train driver killed

- aircraft crashes (Airbus & Korean Airlines)

- bank system overdraft letters cause suicide

So why is testing necessary?

- because software is likely to have faults

- to learn about the reliability of the software

- to fill the time between delivery of the software and
the release date

- to prove that the software has no faults

- because testing is included in the project plan

- because failures can be very expensive

- to avoid being sued by customers

- to stay in business

Why not just "test everything"?

system has
20 screens

Average: 10 fields / screen
2 types input / field
(date as Jan 3 or 3/1)
(number as integer or decimal)
Around 100 possible values

Total for 'exhaustive' testing:

20 x 4 x 3 x 10 x 2 x 100 = 480,000 tests

If 1 second per test, 8000 mins, 133 hrs, 17.7 days

(not counting finger trouble, faults or retest)

Avr. 4 menus
3 options / menu

10 secs = 34 wks, 1 min = 4 yrs, 10 min = 40 yrs

Exhaustive testing?

 What is exhaustive testing?
- when all the testers are exhausted

- when all the planned tests have been executed

- exercising all combinations of inputs and
preconditions

 How much time will exhaustive testing take?
- infinite time

- not much time

- impractical amount of time

How much testing is enough?

- it‟s never enough
- when you have done what you planned

- when your customer/user is happy

- when you have proved that the system works
correctly

- when you are confident that the system works
correctly

- it depends on the risks for your system

How much testing?

 It depends on RISK
- risk of missing important faults

- risk of incurring failure costs

- risk of releasing untested or under-tested software

- risk of losing credibility and market share

- risk of missing a market window

- risk of over-testing, ineffective testing

- what not to test (this time)

 use RISK to

- allocate the time available for testing by
prioritising testing ...

So little time, so much to test ..

 Test time will always be limited

 use RISK to determine:

- what to test first

- what to test most

- how thoroughly to test each item} i.e. where to
place emphasis

Most important principle

Prioritise tests
so that,

whenever you stop testing,
you have done the best testing

in the time available.

Testing and Quality

 Testing measures software quality

 Testing can find faults; when they are removed,
software quality (and possibly reliability) is
improved

 What does testing test?
- system function, correctness of operation

- non-functional qualities: reliability, usability,
maintainability, reusability, testability, etc.

Other factors that influence testing

 Contractual requirements
 Legal requirements
 Industry-specific requirements

- e.g. pharmaceutical industry (FDA), compiler
standard tests, safety-critical or safety-related such
as railroad switching, air traffic control

It is difficult to determine

how much testing is enough

but it is not impossible

Testing Techniques

Verification
&

Validation

 Reviews

 Walkthrough

 Inspection

Verification Types

 Find all the missing information

• Who

• What

• Where

• When

• Why

• How

Verification “What to Look For?”

 Simply giving a document to a colleague
and asking them to look at it closely which
will identify defects we might never find
on our own.

Peer Review

Informal meetings, where participants come to the
meeting and the author gives the presentation.

 Objective:
- To detect defects and become familiar with the material

 Elements:
- A planned meeting where only the presenter must

prepare
- A team of 2-7 people, led by the author
- Author usually the presenter.

 Inputs:
- Element under examination, objectives for the

walkthroughs applicable standards.
 Output:

- Defect report

Walkthrough

Formal meeting, characterized by individual preparation by all
participants prior to the meeting.

 Objectives:
- To obtain defects and collect data.
- To communicate important work product information .

 Elements:
- A planned, structured meeting requiring individual

preparation by all participants.
- A team of people, led by an impartial moderator who assure

that rules are being followed and review is effective.
- Presenter is “reader” other than the author.
- Other participants are inspectors who review,
- Recorder to record defects identified in work product

Inspection

 An important tool specially in formal meetings
like inspections

 They provide maximum leverage on verification

 There are generic checklists that can be applied
at a high level and maintained for each type of
inspection

 There are checklists for requirements, functional
design specifications, internal design
specifications, for code

Checklists : the verification tool

Two main strategies for validating software

- White Box testing

- Black Box testing

Validation Strategies

White Box Testing

- Deals with the internal logic and structure of the
code

- The tests are written based on the white box testing
strategy incorporate coverage of the code written,
branches, paths, statements and internal logic of
the code etc.

- Normally done the developers

Validation Strategies

White Box Testing can be done by:

- Data Coverage

- Code Coverage

White Box testing

Data Coverage

- Data flow is monitored or examined
through out the program. E.g. watch
window we use to monitor the values of
the variables and expressions.

White Box Testing

Code Coverage

- It’s a process of finding areas of a program
not exercised by a set of test cases.

- Creating additional test cases to increase
coverage

- Code coverage can be implemented using
basic measure like, statement coverage,
decision coverage, condition coverage and
path coverage

White Box Testing

Black Box Testing

- Does not need any knowledge of internal design or
code

- Its totally based on the testing for the requirements
and functionality of the work product/software
application.

- Tester is needed to be thorough with the
requirement specifications of the system and as a
user, should know how the system should behave in
response to the particular action.

Validation Strategies

Commonly used Black Box methods :

- Equivalence partitioning

- Boundary-value analysis

- Error guessing

Black Box testing Methods

 An equivalence class is a subset of data that is
representative of a larger class.

 Equivalence partitioning is a technique for testing
equivalence classes rather than undertaking
exhaustive testing of each value of the larger
class.

Equivalence Partitioning

If we expect the same result from two tests, you consider
them equivalent. A group of tests from an equivalence
class if,

- They all test the same thing

- If one test catches a bug, the others probably will too

- If one test doesn’t catch a bug, the others probably won’t either

Equivalence Partitioning

For example, a program which edits credit limits
within a given range ($ 10,000-$15,000) would
have three equivalence classes:

- Less than $10,000 (invalid)

- Between $10,000 and $15,000 (valid)

- Greater than$15,000 (invalid)

Equivalence Partitioning

 Partitioning system inputs and outputs into
„equivalence sets‟

- If input is a 5-digit integer between 10,000 and 99,999
equivalence partitions are <10,000, 10,000-99,999 and
>99,999

 The aim is to minimize the number of test cases
required to cover these input conditions

Equivalence Partitioning

Equivalence classes may be defined according to the
following guidelines:

- If an input condition specifies a range, one valid and two
invalid equivalence classes are defined.

- If an input condition requires a specific value, then one valid
and two invalid equivalence classes are defined.

- If an input condition is Boolean, then one valid and one
invalid equivalence class are defined.

Equivalence Partitioning

 Divide the input domain into classes of data for which test
cases can be generated.

 Attempting to uncover classes of errors.

 Based on equivalence classes for input conditions.

 An equivalence class represents a set of valid or invalid
states

 An input condition is either a specific numeric value, range
of values, a set of related values, or a Boolean condition.

 Equivalence classes can be defined by:

If an input condition specifies a range or a specific value,
one valid and two invalid equivalence classes defined.

If an input condition specifies a Boolean or a member of a
set, one valid and one invalid equivalence classes defined.

 Test cases for each input domain data item developed and
executed.

Equivalence Partitioning Summary

 “Bugs lurk in corners and congregate at boundaries…”

Boris Beizer

Boundary value analysis

 A technique that consists of developing test cases and data
that focus on the input and output boundaries of a given
function.

 In same credit limit example, boundary analysis would test:

- Low boundary plus or minus one ($9,999 and $10,001)

- On the boundary ($10,000 and $15,000)

- Upper boundary plus or minus one ($14,999 and $15,001)

Boundary value analysis

 Large number of errors tend to occur at boundaries of the input
domain

 BVA leads to selection of test cases that exercise boundary
values

 BVA complements equivalence partitioning. Rather than select
any element in an equivalence class, select those at the ''edge' of
the class

 Examples:

 For a range of values bounded by a and b, test (a-1), a, (a+1), (b-1),
b, (b+1)

 If input conditions specify a number of values n, test with (n-1), n
and (n+1) input values

 Apply 1 and 2 to output conditions (e.g., generate table of
minimum and maximum size)

Boundary value analysis

Example: Loan application

Customer Name

Account number

Loan amount requested

Term of loan

Monthly repayment

Term:

Repayment:

Interest rate:

Total paid back:

6 digits, 1st
non-zero

£500 to £9000

1 to 30 years

Minimum £10

2-64 chars.

Account number

5 6 7
invalid

valid
invalid

Number of digits:

First character:

invalid: zero

valid: non-zero

Conditions Valid
Partitions

Invalid
Partitions

Valid
Boundaries

Invalid
Boundaries

Account
number

6 digits
1st non-zero

< 6 digits
> 6 digits
1st digit = 0
non-digit

100000
999999

5 digits
7 digits
0 digits

 Based on the theory that test cases can be
developed based upon the intuition and
experience of the Test Engineer

 For example, in an example where one of the
inputs is the date, a test engineer might try
February 29,2000 or 9/9/99

Error Guessing

Various Types of Testing

Validation is done at two levels
- Low Level

• Unit testing
• Integration Testing

- High Level

• Function Testing
• System Testing
• Acceptance Testing

Validation Activities

- Searches for defect and verifies the functionality of
software, depending upon the context of the development

- It includes testing of functional and non-functional
characteristics

- It occurs with access to code being tested and with the
support of development environment

- Defects are fixed as soon as they are found with out
formally recording incident

- If test cases are prepared and automated before coding, it
is termed as test-first approach or test-driven
development.

Unit Testing

Integration Testing

 Integration testing tests interface between
components, interaction to different parts of system.

 Greater the scope of Integration, more it becomes to
isolate failures to specific component or system, which
may leads to increased risk.

 Integration testing should normally be integral rather
than big bang, in order to reduce the risk of late defect
discovery

 Non functional characteristics (e.g. performance) may
be included in Integration Testing

Functional Testing

 It is used to detect discrepancies between a program‟s
functional specification and the actual behavior of an
application.

 The goal of function testing is to verify whether your
product meets the intended functional specifications
laid out the development documentation.

 When a discrepancy is detected, either the program or
the specification is incorrect.

 All the black box methods are applicable to function
based testing

 It is concerned with the behavior of whole system as
defined by the scope of development project

 It includes both functional and non-functional
requirement of system

 System testing falls within the scope of black box
testing.

 On building the entire system, it needs to be tested
against the system specification.

 An Independent testing team may carry out System
Testing

System Testing

 Usability testing
 Performance Testing
 Load Testing
 Stress Testing
 Security Testing
 Configuration Testing
 Compatibility Testing
 Installation Testing
 Back up & Recovery Testing
 Availability Testing
 Volume Testing

System Testing Types

Usability Testing

 The typical aim of usability testing is to cause the application to
fail to meet its usability requirements so that the underlying
defects can be identified, analyzed, fixed, and prevented in the
future.

 Performance testing is testing to ensure that the application
response in the limit set by the user.

Performance Testing

 Subject the system to extreme pressure in a short
span.

 E.g Simultaneous log-on of 500 users
 Saturation load of transactions

Stress Testing

Configuration Testing

 Configuration testing is the process of checking the
operation of the software you are testing with all
these various types of hardware.

Compatibility Testing

 The purpose of compatibility testing is to evaluate
how well software performs in a particular hardware,
software, operating system, browser or network
environment.

Acceptance Testing

 Acceptance testing may assess the system readiness
for deployment and use

 The goal is to establish confidence in the system,
parts of system or non-functional characteristics of
the system

 Following are types of Acceptance Testing:

- User Acceptance Testing
- Operational Testing
- Contract and Regulation Acceptance Testing
- Alpha and Beta Testing

Objectives of Different Types of Testing

 In development Testing, main objective is to cause as
many failures as possible.

 In Acceptance Testing, main objective is to confirm that
system work as expected.

 In Maintenance Testing, main objective is to make sure
that no new errors have been introduced.

 In Operational testing, main objective may be to access
system characteristics such as reliability and availability.

Other Testing Types

Other than validation activities like unit, integration,
system and acceptance we have the following other
types of testing

 Mutation testing
 Progressive testing
 Regression testing
 Retesting
 Localization testing
 Internationalization testing

 Mutation testing is a process of adding known faults
intentionally, in a computer program to monitor the
rate of detection and removal, and estimating the
umber of faults remaining in the program. It is also
called Be-bugging or fault injection.

Mutation testing

 Most test cases, unless they are truly throw-away, begin as
progressive test cases and eventually become regression test
cases for the life of the product.

Progressive/Regressive Testing

 Regression testing is not another testing activity
 It is a re-execution of some or all of the tests developed for a

specific testing activity for each build of the application
 Verify that changes or fixes have not introduced new problems
 It may be performed for each activity (e.g. unit test, function test,

system test etc)

Regression Testing

Regression Testing
 evolve over time
 are run often
 may become rather large

Why retest?
 Because any software product that is actively

used and supported must be changed from time to
time, and every new version of a product should
be retested

Retesting

 The process of adapting software to a specific locale,
taking into account, its language, dialect, local
conventions and culture is called localization.

Localization Testing

 The process of designing an application so that it can be
adapted to various languages and regions without
engineering changes.

Internationalization Testing

Test Types : The Target of Testing

 Testing of functions (functional testing)

- It is the testing of “what” the system does
- Functional testing considers external behavior of the system
- Functional testing may be performed at all test levels

 Testing of software product characteristics (non-functional
testing)

- It is the testing of “How” the system works
- Nonfunctional testing describes the test required to measure

characteristics of systems and s/w that can be quantified on varying
scale

- Non-functional testing may be performed at all levels

Test Types : The Target of Testing

Testing of software structure/architecture (structural testing)

- Structural testing is used in order to help measure the thoroughness of
testing through assessment of coverage of a type of structure

- Structural testing may be performed at all levels.

Testing related to changes (confirmation and regression testing)

- When a defect is detected and fixed then the software should be retested to
confirm that the original defects has been successfully removed. This is
called Confirmation testing

- Regression Testing is the repeated testing of an already tested program,
after modification, to discover any defects as a result of changes.

- Regression Testing may be performed at all levels.

 It is the process of defining a testing project such that
it can be properly measured and controlled

 It includes test designing, test strategy, test
requirements and testing resources

Test Planning

Test Planning - different levels

Test
Policy

Test
Strategy

Company level

High Level
Test Plan

High Level
Test Plan

Project level (IEEE 829)
(one for each project)

Detailed
Test Plan

Detailed
Test Plan

Detailed
Test Plan

Detailed
Test Plan

Test stage level (IEEE 829)
(one for each stage within a project,
e.g. Component, System, etc.)

Parts of Test Planning

Comm’n
Mgmt

Risk
Mgmt

Test Script
And
Scheduling

Identifying
Test
Deliverables Identifying

Env needs

Identifying
Skill sets /
Trng

Setting
Entry / Exit
Criteria

Deciding
Test
Strategy

Scope
Mgmt

Preparing
A Test
Plan

Test
Planning

Start
Here

Test Planning

 Test Planning is a continuous activity and is performed in all
the life cycle processes and activities

 Test Planning activities includes:
- Defining the overall approach
- Integrating and coordinating the testing activities into software life

cycle activities
- Assigning resources for different tasks defined
- Defining the amount, level of detail, structure and templates for test

documentation
- Selecting metrics for monitoring and controlling test preparation
- Making decisions about what to test, what roles will perform the test

activities, when and how test activities should be done, how the test
results will be evaluated and when to stop the testing

Test Planning

 Exit Criteria – Defines when to stop testing

 Exit criteria may consist of
- Thoroughness measures, such as coverage of code,

functionality or risk

- Estimates of defect density or reliability measures

- Cost

- Residual risk

- Schedules such as those based on time to market

Risk Objectives

 Suppliers Issues

• Failure of a third party
• Contractual Issues

 Organizational Factors

• Skill and staff shortage
• Personal and training issues
• Potential issues, such as problem with testers communication,

failure to follow up the information found in Testing
• Improper attitude towards testing

 Technical Issues

• Problem in defining the right requirement
• The extent that requirements can be met given existing

constraints
• Quality of design, code and tests

Risk Objectives

 Product/Project Risks Objective
- Error prone software delivered

- Potential that the software/hardware could cause
harm to company/individual

- Poor software characteristics

- Software that does not perform its intended
functions

 A risk based approach to testing provides
proactive opportunities to reduce the levels of
product risks, starting in the initial stages of
project

Test Designing and Execution

Test Design Specification

specification execution recording
check

completion

Identify conditions

Design test cases

Build tests

Design(detailed level)

A good test case

 effective

 exemplary

 evolvable

 economic

Finds faults

Represents others

Easy to maintain

Cheap to use

Test specification

 test specification can be broken down into three
distinct tasks:
1. identify: determine „what‟ is to be tested (identify

test conditions) and prioritise

2. design: determine „how‟ the „what‟ is to be tested
(i.e. design test cases)

3. build: implement the tests (data, scripts, etc.)

Task 1: identify conditions

 list the conditions that we would like to test:
- use the test design techniques specified in the test plan

- there may be many conditions for each system function
or attribute

- e.g.
• “life assurance for a winter sportsman”
• “number items ordered > 99”
• “date = 29-Feb-2004”

 prioritise the test conditions
- must ensure most important conditions are covered

(determine „what‟ is to be tested and prioritise)

Selecting test conditions

Importance

Time

Best set4
8

First set

Task 2: design test cases

 design test input and test data
- each test exercises one or more test conditions

 determine expected results
- predict the outcome of each test case, what is

output, what is changed and what is not changed

 design sets of tests
- different test sets for different objectives such as

regression, building confidence, and finding faults

(determine „how‟ the „what‟ is to be tested)

Designing test cases

Importance

Time

Most important
test conditions

Least important
test conditions

Test cases

Task 3: build test cases

 prepare test scripts
- less system knowledge tester has the more detailed

the scripts will have to be

- scripts for tools have to specify every detail

 prepare test data
- data that must exist in files and databases at the start

of the tests

 prepare expected results
- should be defined before the test is executed

(implement the test cases)

Test execution

specification execution recording
check

completion

Planning (detailed level)

Execution

 Execute prescribed test cases
- most importantones first

- would not execute all test cases if
• testing only fault fixes
• too many faults found by early test cases
• time pressure

- can be performed manually or automated

Test Recording

specification execution recording
check

completion

Planning (detailed level)

Test recording 1

 The test record contains:
- identities and versions (unambiguously) of

• software under test
• test specifications

 Follow the plan
- mark off progress on test script

- document actual outcomes from the test

- capture any other ideas you have for new test cases

- note that these records are used to establish that all
test activities have been carried out as specified

Test recording 2

 Compare actual outcome with expected
outcome. Log discrepancies accordingly:
- software fault

- test fault (e.g. expected results wrong)

- environment or version fault

- test run incorrectly

 Log coverage levels achieved (for measures
specified as test completion criteria)

 After the fault has been fixed, repeat the
required test activities (execute, design, plan)

Check test completion

specification execution recording
check

completion

Planning (detailed level)

Check test completion

 Test completion criteria were specified in the
test plan

 If not met, need to repeat test activities, e.g.
test specification to design more tests

specification execution recording
check

completion

Coverage too low

Coverage
OK

Test completion criteria

 Completion or exit criteria apply to all levels
of testing - to determine when to stop
- coverage, using a measurement technique, e.g.

• branch coverage for unit testing
• user requirements
• most frequently used transactions

- faults found (e.g. versus expected)

- cost or time

Comparison of tasks

Clerical

Intellectual

one-off
activity

activity
repeated

many times

Governs the
quality of tests

Good to
automate

Execute

Recording

Planning

Specification

Psychology of testing

Why test?

 build confidence
 prove that the software is correct
 demonstrate conformance to requirements
 find faults
 reduce costs
 show system meets user needs
 assess the software quality

Fault foundFaults found

Confidence

Time

Confidence

No faults found = confidence?

Few
Faults

Many
Faults

Few
Faults

Few
Faults

Few
Faults

You may
be here

You think
you are here

Test
Quality

Low

High

Software Quality
Low High

Assessing software quality

A traditional testing approach

 Show that the system:
- does what it should

- doesn't do what it shouldn't

Fastest achievement: easy test cases

Goal: show working

Success: system works

Result: faults left in

A better testing approach

 Show that the system:
- does what it shouldn't

- doesn't do what it should

Fastest achievement: difficult test cases

Goal: find faults

Success: system fails

Result: fewer faults left in

The testing paradox

Purpose of testing: to find faults

The best way to build confidence

is to try to destroy it

Purpose of testing: build confidence

Finding faults destroys confidence
Purpose of testing: destroy confidence

Who wants to be a tester?

 A destructive process
 Bring bad news (“your baby is ugly”)

 Under worst time pressure (at the end)
 Need to take a different view, a different mindset

(“What if it isn‟t?”, “What could go wrong?”)
 How should fault information be communicated

(to authors and managers?)

Tester’s have the right to:

- accurate information about progress and changes

- insight from developers about areas of the software

- delivered code tested to an agreed standard

- be regarded as a professional (no abuse!)

- find faults!

- challenge specifications and test plans

- have reported faults taken seriously (non-reproducible)

- make predictions about future fault levels

- improve your own testing process

Testers have responsibility to:

- follow the test plans, scripts etc. as documented

- report faults objectively and factually (no abuse!)

- check tests are correct before reporting s/w faults

- remember it is the software, not the programmer,
that you are testing

- assess risk objectively

- prioritise what you report

- communicate the truth

Independence

 Test your own work?
- find 30% - 50% of your own faults

- same assumptions and thought processes

- see what you meant or want to see, not what is there

- emotional attachment
• don‟t want to find faults
• actively want NOT to find faults

Levels of independence

 None: tests designed by the person who wrote
the software

 Tests designed by a different person
 Tests designed by someone from a different

department or team (e.g. test team)

 Tests designed by someone from a different
organisation (e.g. agency)

 Tests generated by a tool (low quality tests?)

Software Defect Life Cycle

Defect Management

A flaw in a system or system component that causes the
system or component to fail to perform its required
function. - SEI

A defect, if encountered during execution, may cause a failure
of the system.

What is definition of defect?

Defect Discovery

Defect Discovery Process

Defect Resolution

Defect Resolution Process

Defect Life Cycle

When a tester reports a Defect, it is tracked through the following
stages: New, Open, Fixed, and Closed. A defect may also be
Rejected, or Reopened after it is fixed. A defect may be Deferred
for a look at a later point of time.

By default a defect is assigned the status New.

A quality assurance or project manager reviews the defect, and
determines whether or not to consider the defect for repair. If the
defect is refused, it is assigned the status Rejected.

If the defect is accepted, the quality assurance or project manager
determines a repair priority, changes its status to Open, and
assigns it to a member of the development team.

Defect Life Cycle

A developer repairs the defect and assigns it the
status Fixed.

Tester retests the application, making sure that the
defect does not recur. If the defect recurs, the quality
assurance or project manager assigns it the status
Reopened.

If the defect is actually repaired, it is assigned the
status Closed.

Defect Life Cycle

Defect Life Cycle Paths

Defect Life Cycle Paths

Defect Classification

Defect Classification

How many testers do we need to
change a light bulb?

 None. Testers just noticed that the room was dark.

 Testers don't fix the problems, they just find them

 Report a defect

 The point of writing Problem Reports is to get bugs fixed.

What Do You Do When You Find a defect?

 Summary
 Date reported
 Detailed description
 Assigned to
 Severity
 Detected in Version

 Priority
 System Info
 Status
 Reproducible
 Detected by
 Screen prints, logs, etc.

Some typical defect report fields

 Project Manager
 Executives
 Development
 Customer Support
 Marketing
 Quality Assurance
 Any member of the Project Team

Who reads the defect reports?

Software Test Automation

Principles of Test Automation
1: Choose carefully what to automate

 Automate tests for highly visible areas

 Minimize automating change-prone areas

 Between GUI and non-GUI portion automation, go for automating
non -GUI portions first

 Automate tests for dependencies to catch ripple effects early

 Automate areas where multiple combos are possible (pros and
cons)

 Automate areas that are re-usable

 Automate “easy areas” to show low hanging fruits

Principles of Test Automation
2: Ensure Automation Covers Full
Circle

Plan

DoCheck

Act

• Automatic Analysis
• Fish Bone Diagrams
• Problem Identification

• Test Capture
• Test Execution
• Results Comparison

• Test Planning
• Automation Planning

• Corrective Action
Implementation
• Automatic Rollover
to next runs
• Incorporation into
Regression

 Compatibility to Platform
 Portability across platforms
 Integration with TCDB, DR and SCM
 2-way mapping to source code (may not be possible

in services)
 Scripting Language
 Compatible to Multiple Programming Environments
 Configurability
 Test Case Reusability
 Selective Execution
 Smart Comparison
 Reliable Support
 Current documentation

Principles of Test Automation
3: Choose Proper Automation Tool

 Resources for Installation
 Resources for ongoing execution
 People Resources

Principles of Test Automation
4: Plan for Infrastructure

 Training
 Development
 Testing the Tests
 Sync-ing with product

version changes

Principles of Test Automation
5: Account for Gestation Period

 Start small
 Don‟t try to automate everything

at the same time
 Allow time for evolving standards

Principles of Test Automation
6: Run a Trial & Calibrate the Tool

Planning

Reqmts

Design Test Design

Test planning

Test reqmts

Coding

The V - Model of Software Development

Test

Execution

Process of Test Automation

• There are plenty of tools available and rarely does one tool meet
all the requirements

• The test tools are expensive (both in upfront costs and running
costs)

• Test tools also require good amount of training and only few
vendors available for training

•Training may not always keep pace with new versions of the tools

• Test tools expect the users to learn new language/scripts and may
not use standard languages/scripts

• Deploying a test tool requires equal amount of effort as deploying a
new product in a company – never underestimate the effort and pain
involved!

Common Experiences in Test Automation

• Migrating from one test tool to another may be difficult and requires
good amount of effort

• Test tools are one generation behind and may not provide
backward / forward compatibility (eg. JAVA SDK support)

• Good number of test tools requires their libraries linked with
product binaries – Causes portions of the testing to be repeated
after those libraries are removed (eg. Performance)

• Test tools are not 100% cross platform – They are supported only
on some platforms and the sources generated from these tools may
not be compatible on other

• Developing sharewares/public domain test tools may not get same
amount of participation/involvement/support as of
standards/products (eg. As against Linux)

Common Experiences in Test Automation

The experiences

• Test tools may not go through same amount of
evaluation for new requirements (eg Year 2000, 508)

•The test tools increases the system requirements and
requires the H/W and S/W to be upgraded at
compile/run-time

• The test tools are capable of testing only the product,
not the impact because of the product/test tool to the
system or network

• Good number of test tools can‟t differentiate between a
product failure and the test suite failure – Causing
increased analysis time and manual testing

Common Experiences in Test Automation

The experiences

•The test tools may not provide good degree of
trouble shooting / debug/error messages to help
in analysis – Resulting in increased “printf”/log
messages in the test suite

• The test tools determine the results based on
messages and screen co-ordinates at run-time –
Intelligence needed to proactively find out the
changes

Common Experiences in Test Automation

• Automation shouldn‟t be considered as stop-gap arrangement to
engage test engineers (when no test execution, do automation!). Test
Automation, like any other project, should start with the end in mind

• A separate team in the organization looking at automation
requirements, tool evaluation and developing generic test suites would
add more value (may not always apply to testing services organization)

• Automation doesn‟t stop with automating the test cases alone. The
test suite needs to be linked with other tools for increased
effectiveness (e.g., Test case database, Defect filing, auto mails,
preparing automatic reports, etc)

• Automation doesn‟t stop with recording & playing back the user
commands; Automated tool should be intelligent enough to say what
was expected, why a test case failed and give manual steps to
reproduce the problem

Common Pitfalls in Test Automation

	SOFTWARE TESTING
	Software testing
	Why to test software?
	Verification Vs Validation
	页 5
	Why are errors found in software
	PowerPoint Presentation
	Who Should Test Your Program?
	Guidelines of Software Testing
	Test case
	TESTING LEVELS
	Unit Testing
	Integration Testing
	Big Bang Testing
	页 15
	页 16
	Bottom-up Integration testing
	Top-down integration testing
	Regression Testing
	System Testing
	页 21
	Recovery testing
	页 23
	security testing
	页 25
	stress testing
	Advantages of stress testing
	Performance testing
	Accepting testing
	页 30
	Testing techniques
	White Box testing
	页 33
	页 34
	Black Box testing

